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Carbon sequestration is crucial for the effective removal of greenhouse gas
emissions and can thereby have substantial effects on the atmosphere and climate
change.

Smith et al (2020) state that there is an increasing global interest in improving soil
management in order to increase soil organic carbon levels, promote climate
change mitigation, strengthen resistance to climate change, and support food
security.

The composition of soil organic matter affects soil functions and characteristics. Soil
organic carbon plays a crucial role in the overall behavior of soils and agro-
ecosystems. It supplies energy for soil microorganisms, stores and supplies
nutrients (nitrogen, phosphorus, and potassium) for plant growth, enhances soil
structure, and contributes to the soil's capacity to retain water and resist erosion.

Schillaci (2018) states that Mediterranean regions have faced significant human
pressures, such as fires, intense land cultivation, and other forms of inadequate
management. The phenomena have resulted in detrimental effects on both
natural and agricultural ecosystems, leading to significant land degradation
through desertification, soil erosion, landslides, and declining SOC levels. (Saia et al.
2017; Persichillo et al. 2017)

This deliverable contributes to WP2 where a solid base for future testing of carbon
farming in the Euro-MED area will be prepared through elaboration of a feasible
action plan, training material, improved visibility and policy connections for future
cooperation. The objective of the deliverable is to propose standards to properly
assess SOM content and soil quality. Specific objectives are:

e Selection of indicators to assess soil functioning, standardization of reference
values of soil indicators and selection of a Minimum Data Set.

e Propose carbon sequestration models adapted for MED agriculture.

e Propose standardization of soil sampling schemes and build consistent soil
guality related databases and references

e Propose analytical determination of organic carbon in soil and simple on-
field procedures to self-check soil quality at the farm level.

e Propose a SOM monitoring methodology including possibility to use novel
Near-Infrared Reflectance Spectroscopy or colorimetry-based techniques.

e Evaluate the impact of agricultural practices, Soil Improving Cropping
Systems, and climate crisis on crop production and carbon sequestration.
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The deliverable is structured in five chapter as follows:

Chapter 1. Introduction, presenting the general scope of the deliverable.

Chapter 2. Monitoring of SOM, in which the methods for measuring SOM are
presented.

Chapter 3. Monitoring of Soil Quality, in which an extensive analysis on soil
quality monitoring and soil quality quantification is described.

Chapter 4. Soil carbon sequestration models, where a review of existing
approaches and models is presented, including applications of selected models.

Chapter 5. Consistent soil quality related databases and references, in which
existing global, European and national databases of soil quality indicators are
presented.

Chapter 6. Conclusions.

Persichillo M.G., Bordoni M., Cavalli M., Crema S. & Meisina C. (2017) - Evaluation of
anthropogenic effects on the sediment delivery dynamics in response to slope
instability. Rend. Online Soc. Geol. It., 42, 5-9. doi: 10.3301/ROL.2017.01.

Saia S, Schillaci C,, Lipani A, Fantappié M., Marker M,, Lombardo L., Matranga M.G,,
Ferraro V., Guaitoli F. & Acutis M. (2017) - Protection of soil from the loss of organic
carbon by considering erosion and managing land use at varying soil type:
indication from a model semiarid area. In: Global Symposium on Soil Organic
Carbon. Rome, Italy, pp. 510-515.

Schillaci, C., Saia, S. and Acutis, M., 2018. Modelling of soil organic carbon in the
Mediterranean area: a systematic map. Rend. Online Soc. Geol. Ital, 46, pp.161-166.

Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C,, Rasse, D.P., Batjes, N.H.,,
Van Egmond, F., McNeill, S, Kuhnert, M. and Arias-Navarro, C., 2020. How to
measure, report and verify soil carbon change to realize the potential of soil
carbon sequestration for atmospheric greenhouse gas removal. Global Change
Biology, 26(1), pp.219-241.
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Soil organic matter, a complex, dynamic component of terrestrial ecosystem, is a
core indicator of soil quality. Carbon is the prime element present in SOM,
comprising 48%-58% of the total weight. Rapid and precise measurement of soil
organic carbon is essential to monitor temporal changes in SOM content. Since
total Cis the sum of both organic and inorganic C pools, several methods have been
developed or modified over the years to determine SOC. A brief description of the
measurement, principles, merits and limitations of the commonly used methods
for measurement of SOC is discussed.

Soil survey is a complex process that depends on proper specification and sound
planning. An important part of the soil survey is the selection of the most suitable
sampling scheme which should be aligned with the general and specific purpose
of the field survey, prior knowledge of the region, scale, and the surveyor
experience.

McKenzie et al. (2008) refer to two general types of field surveys: qualitative and
guantitative methods of survey. Qualitative methods include a) an integrated
survey, that relies on the assumption of interdependency of land characteristics
and their correlation with environmental features and is intended primarily to
identify the soils and vegetation within the targeted areas, b) free surveys, which
are the conventional form of soil survey while the c) the stratigraphic survey, which
places emphasis on the soil mantle rather than the soil profile. The soil materials
approach is a hybrid type of soil survey that descriptions and definitions of soil
materials are based on their morphology, without considering their position in the
soil profile. Qualitative grid survey is a method where field survey is based on a
regular grid.

Quantitative soil survey includes the analysis of soil behavior and land attributes
considering the quantitative inputs and outputs by using empirical and process
models across different ranges and scales. Coommonly used quantitative methods
are based on geostatistical approaches, where maps are produced as grid
estimates based on field data. Another set of statistical quantitative methods are
correlation, regression, collectively known as environmental correlation (e.g.
SCORPAN, McBratney et al 2003).
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Soil forms a nearly continuous mantle whose properties and characteristics change
continuously in space. Only a few soil properties can be observed from the soil
surface, so the soil properties must be observed through the excavation of soil
profiles or by soil sampling at a certain depth.

Sampling is the process of choosing a subset of samples to measure from the entire
population. The measurements taken on this subset, or sample, are subsequently
used to estimate the parameters, or attributes, of the entire population. There is no
naturally defined volume of quantity to be used as a representative sample.
Choosing the most effective technique for selecting the samples that will finally be
used to estimate the population's attributes is known as sampling design. (Carter
and Gregoric 2008).

Choosing the right time and place to take the soil sample and how to collect the
samples are the main questions that significantly influence the survey"s success
and usefulness, which is primarily determined by the purpose of investigation and
logistic constraints. A good strategy for planning the scheme is to start at the end
and reason backward (de Gruijter, 2000). In the case of the LUCAS survey program,
sampling points with similar densities were allocated for each country, rather than
allocating sampling points according to soil heterogeneity. Random distribution of
the sampling locations is an approach often used for monitoring scheme
inventories, while the second approach when soil heterogeneity is the primary
criterion, is used for systematic soil surveys for mapping purposes.

Sampling locations can be chosen following a system of a) haphazard sampling
when sampling locations are selected with no preferences or criteria, b) judgment
sampling, in which the researcher locates sapling sites by using his judgment and
is usually used in pedogenetic and soil geomorphic studies aiming to identify the
mechanisms responsible for the development of soil characteristics, and <)
probability sampling (Carter and Gregoric 2008). Similarly, Gruijter (2006) proposes
three possible modes of sample point selections: convenience method which is
similar to the haphazard sampling method where sampling locations are selected
on the most convenient locations for the surveyor, purposive sampling when the
surveyor tries to locate the sample points based on a given purpose, like in the case
of mapping soil classes, whereby the surveyor identifies the sample points in
locations that are anticipated to provide the most valuable information regarding
the classification of soil; and the third mode of sampling locations, which is known
as probability sampling, where, unlike the other modes, the sample points are
selected at random location.

Generating a sample that is representative of the target population is the primary
objective of sampling. The only sure way of avoiding bias inherent in purposive
sampling is by using probabilistic sampling. If the selection of samples is not
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probabilistic, there is a high risk that the sample will not accurately represent the
entire population. (McKenzie at al. 2008).

In soil and earth sciences, there are multiple choices available for creating a suitable
sample plan. However, the most generally utilized methods are random and
systematic sampling. Gruijter (2006) distinguishes two groups of sampling
approaches: the design-based approach used in classical soil survey sampling and
the model-based approach, used in geostatistics.

In the case of the design-based approach, the locations are random while the
population is fixed. The design-based approach assesses uncertainty by iteratively
sampling with various sets of sample sites, treating the pattern of values in the area
as unknown but constant. The model-based approach assesses uncertainty by
iteratively sampling from a predetermined set of sample points and is
recommended in cases when the spatial structure of soil variation in a certain
region is the scope of interest, (Brus and de Gruijter 1997; de Gruijter, 2006). It should
be noted that although probabilistic sampling avoids bias, it can be rather
expensive.

2231 Simple random sampling

In simple random sampling, it is equally probable that all samples of the defined
size will be selected independently of one another. Apart from a fixed sample size
that was previously determined, there are no other constraints. Initially, the
minimum and maximum X and Y coordinates of the area are determined. For each
sampling point, two independent random X and Y coordinates are generated from
the pool of X and Y min and max intervals, and a point-to-polygon routine is used
to determine whether the point falls within the area.

2232 Stratified Sampling

In a stratified sampling design, the area is divided into relatively homogeneous sub-
regions called strata, and this design is based on site-specific information extracted
from EO data, thematic maps like soil maps or land cover maps, using spatial
pattern detection techniques. Each stratum is then sampled independently from
each other by applying a simple random sampling design. The methods for
selecting sampling points explained in the simple random sampling section are
applied separately for each stratum.

2233 Two-Stage Sampling

In two-stage sampling, the areas are subdivided into subareas, but the sampling is
limited to a specific number of randomly chosen subareas called primary units.
Sampling points within the selected strata are identified as explained in simple
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random sampling section. This approach is used in large-scale surveys and is
usually referred to as multistage sampling.

2234 Cluster sampling

Cluster sampling involves the selection of predetermined groups of points, rather
than selecting individual points. The number of clusters that can be created is
indefinite, so only selected sets of clusters are sampled. The algorithm for cluster
creation starts with the selection of a random point according to the rules of simple
random sampling. The other points of the cluster are created following
predetermined geometric rules (e.g. prechosen distance in both directions).

2235 Systematic sampling

Systematic sampling involves randomly selecting points from a predetermined set,
unlike the simple, stratified and two-stage random sampling methods. In this
method, unlike cluster sampling, only one cluster is selected, so this can be
considered as a special case of cluster sampling. The cluster should be defined to
cover the area as well as possible, which is usually achieved by creating a cluster as
a grid with a triangular, hexagonal, or square shape.

The complex nature of landforms at the location of interest is also a factor to be
considered. Either a transect or a grid can be utilized for level and near-level
locations (Carter and Gregoric, 2008). The suitability of transects on sloping terrain
is partially determined by the plan (across-slope) curvature. However, if there is
significant plan curvature, one transects alone will not be adequate. In this scenario,
a zigzag pattern or numerous, randomly positioned transects could be employed,
although a grid pattern is more commonly utilized.

22.4.1 Compound sampling

Compound Sampling is a combination of the previous basic strategies. One
example of compound strategy is a combination of a two-stage sampling method
with systematic sampling, instead of using the simple random sampling method
as previously explained. In this case, a square grid of 2x2 primary units is selected
from the previously established grid of the area, and then a 2 x 2 square grid is
applied within each primary unit.

2.2.4.2 Spatial Systematic Strategies

This is another group of advanced design strategies. The region is predominantly
partitioned into square strata, with one specific point being chosen for each
stratum, although not in an independent manner. A random X position or
coordinate is generated for every row of strata, while a random Y coordinate is

10
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generated for every column. The sample point inside a stratum is determined by
merging the row and column coordinates.

The USDA Field Book for Describing and Sampling Soils (2021) states that the
usefulness of soil property data is limited without context, as it depends on a geo-
referenced description to be meaningful. The Field Book emphasizes the need to
stratify soil areas by similar geologic and pedogenetic processes, followed by
random sampling within the stratified areas, which is at the core of the sampling
methodology.

The JRC s “Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock
in Mineral Soil of the European Union” (Stolbovoy et al 2007) defines a method for
identifying the changes of SOC in mineral soil, referred to as Area-Frame
Randomized Soil Sampling (AFRSS). The geolocation of each sampling location
with sampling sites and position of the soil profile should be identified by GPS to
enable revisiting of the sample sites. For the determination of bulk density, the JRC
Sampling protocol recommends the method of using an undisturbed sample with
a minimum volume of 100 cm?® taken from non-stony soils.

According to the LUCAS methodology (Toth, G. et al, 2014), the best soil mapping is
performed when a design-based, multi-stage stratified random sampling
approach is chosen (McKenzie et al, 2008). The CORINE LANDCOVER 2000 dataset,
with a resolution of 100 meters, is utilized to determine the corresponding area of
each land use category. The quantity of selected points is directly related to the
proportion of land use coverage in each country. The quantiles of each landform
and land use class are combined, mapped and transformed into vectors to
calculate the unique value of the strata in each location. After the finalization of the
process of stratification, soil sampling locations were selected.

Soil properties are measured and described in various units and categories
expressed on scale or ordered according to certain criteria. In general soil attributes
are expressed as nominal values (as a binary or multistate value), ordinal values that
can be ordered or ranked as discrete classes, interval attributes expressed on a
continuous scale and which do not contain true zero (pH, air temperatures), and
ratio scale attributes.

During the field survey and collection of soil specimens for SOC measurement, it is
of particular interest to record data for the site specifics like land use (actual and
historical data), records for the litter and woody debris, that can be used for
estimating total carbon density and procedures for sampling the site-carbon in

n
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coarse woody debris, surface litter and roots (McKenzie et al 2008). Data related to
management practices, soil cultivation system, cropping patterns and inputs,
especially of organic materials, should also be recorded.

This is the next step after the adoption of the most appropriate soil sampling
strategy and sample design. Depending on the purpose of the field soil survey and
soil attributes that are surveyed several approaches of the collection of samples are
recommended according to McKenzie et al (2008), a common practice is to collect
specimens spanning throughout the entire depth of the soil profile. Another
method is to collect specimens from the centers of predefined sampling intervals,
and the third recommended approach is the subdivision of soil profile into horizons.
In such cases, when the soil profile is subdivided into soil horizons, samples are
collected continuously throughout the entire depth of the soil horizon as disturbed
specimens.

In the case of interval sampling of disturbed specimens, the recommendation is to
use a maximum sampling depth up to 10 cm, for the first 30 cm, and on 30 cm
intervals for the depth from 30-100 cm. In some special cases of soil monitoring
(heavy metals contents, acidification etc.) the first layer may need to be sampled up
to5cm. depth. Below 2 m, the sampling interval should be sufficient to characterize
the material found. If the measurement of organic matter and/or pH is significant,
it isrecommended to collect asample from a depth of 0-15 cm (Carter and Gregoric,
2008).

The LUCAS sampling procedure recommends collecting samples from the
designated locations by a process of composite sampling (bulk sampling).
According to this methodology, five soil sub-samples must be collected from each
sampling site and a mixture of these soil samples should be transported to the
laboratory. Soil samples from the central and the four sub-sampling locations must
be placed together in a plastic container and mixed in order to prepare the required
composite sample. The quantity of soil needed from the composite sample is about
500 grams. The fundamental concept of this methodology is that the soil sample
should sufficiently represent the area defined by the chosen points.

Some procedures involve the preservation of the natural structure of the soil.
Physical measurements usually require the acquisition of intact samples, while
chemical analyses are generally conducted on altered samples.

Several soil sample procedures can be used to evaluate coarse fragments and bulk
density, including the clod, core, pit, or excavation approach. The fundamental
principle is to extract a sample thatis larger than the largest rock within the sample.
The level of soil structure development, soil water content, and potential distortion

12
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during sampling will impact the size of the sample and the caution required during
handling.

Soil bulk density (ps) is the ratio of the mass (g) of an oven-dry soil sample to the
volume (cm) of that sample at a specified moisture condition (Sheldrick B.H. 1984).
Multiple duplicate samples are required to obtain an accurate estimation of the
bulk density of the soil horizon. When reporting bulk density data, it is important to
provide the water content at which the volume measurement was taken. The
preferred types and quantities of specimen for bulk density are: Undisturbed small
core (100 cm?®) or a large clod in 3 to 4 replications (McKenzie et al, 2008). As
mentioned in the LUCAS methodology, the sampling point for the collection of soil
specimens for bulk density estimation is the central sampling point of the sampling
location (Stolbovoy et al 2007).

2.2.10.1 Bulk density — core sampling (cvlinder method)

The core sampling cylinder method is generally used for the estimation of p, of
undisturbed soil. A rigid cylinder of known diameter (100 to 250 cm?®) and height is
inserted in the soil. A sample of undisturbed soil with a cylinder's exact inside
dimension is gathered and dried. Bulk density is calculated by dividing the dry mass
of a soil sample by its volume and is typically measured in grams per cubic
centimeter. (g/cm?3). Obtaining core samples with a core sampler is relatively simple
if no stones are present.

When surface core sampling is collected, the soil surface must be cleaned from
stones or vegetation. The procedure is repeated with additional cores in close
proximity to get an adequate number of duplicates. The core samples must be
carefully excavated, taking care not to damage the soil sample. The successfully
sampled cores are packed in loose soil in plastic bags or other containers.

2.2.10.2 Deep layer soil core sampling

When sampling core samples in deeper soil layers, a sampling kit with a soil auger
is used and is pushed or driven into the soil until reaching the desired depth and
then removed. Various samplers are accessible that come with a metallic enclosure
to contain the core and facilitate convenient extraction and manipulation of the
sample during the processes of weighing, wetting, and drying.

2.2.10.3 Bulk density (pb) - clod sampling

In a clod method after excavation of the soil pit, several clods must be selected with
select with approx. volume of about 50 to 200 cm?® The protrusions should be
trimmed while roots are cut off with sensors.

13
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2.2.10.4 Bulk density (pb) — excavation method

The excavation method is employed to determine the soil bulk density in situations
where core sampling and clod methods are not feasible, such as in the presence of
a significant amount of stones or gravel, or on sloping terrains. The excavation
method is appropriate for soils that have a high proportion of coarse fragments,
such as those in forests. The advantage of this method is that it can be used for
measuring py on virtually all types of soil except on soils with large pores. The soil
volume can be determined by filling the excavated hole with a measured quantity
of uniformly graded sand of a known density or water.

"The organic fraction of the soil exclusive of undecayed plant and animal residues
is defined as Soil Organic Matter" (SSSA, 1997) and is synonymously named as a
"humus." Nevertheless, when conducting laboratory analyses, the soil organic
matter (SOM) often comprises solely of the organic elements that are present
alongside soil particles that pass through a 2-mm sieve (Nelson and Sommers,
1982). Soil Organic Matter is a complex mixture of animal or plant residues in
different stages of decomposition, living or decaying microbiological tissue, and
resistant humic substances and represents the most dynamic and active soil
component of soils. From an agronomic point of view, SOM and its fractions have
the most significant influence on soil fertility and plant productivity. Carbon is the
predominant element found in SOM, accounting for 48 to 58% of the total weight.
Therefore, organic C determinations are commonly used to quantify organic
matter by multiplying the C value by a certain factor. (Nelson and Sommers 1982).

Organic carbon determination can be achieved by i) analysis of total C and
inorganic C and subtraction of the inorganic from total C ii) a total C determination
in the soil sample, after the destruction of the inorganic C, and Ill) reduction of the
C,0+* by organic C compounds in the soil sample, and subsequent quantification
of the unreduced C,O-* by oxidation-reduction titration or other colorimetric
techniques.

2311 Medium-temperature resistance furnace

In the processes involving dry combustion, the soil sample is burned in a stream of
purified O,, and the CO; in the effluent gas stream is absorbed by Accurate or some
other absorbent and weighted. CO; is determined gravimetrically or titrimetric.
Reference method, but time-consuming.

14
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2312 High-temperature induction furnace

Ignitions of the crucible with soil sample (0.5 g, 100 or 140 mech sieve) mixed with
Fe accelerator, and Sn coated Cu accelerator, at high temperatures (>1650) in a O,
stream. CO; is determined gravimetrically or titrimetric.

2313 Automated methods

The sample is mixed with catalysts and is directly heated on a resistance or
induction furnace in the presence of O, stream to convert all C to CO, CO;
determination is done with gas chromatography, gravimetric or conductometric,
and IR absorption spectrometry. Rapid simple, and precise. The release of
contaminant CO; from alkaline earth carbonates is very slow when a resistance
furnace is used (Rossel et. al, 2001).

2.3.14 Weight loss with ignition

The sample is heated to 430°C in a muffle furnace but gives a high level of SOM
because weight loss is a result of the water, CO, and other volatile compounds.

Organic carbon may be determined as a

i) Difference between the total C and inorganic C

ii)  Quantities of organic C in the sample after the destruction of the inorganic
Cand

iii) Dichromate (Cr,O-%) oxidation with external heat (Cr,O-? oxidizes organic C
in acid medium. Subsequent determination of the excessive quantities of
Cr,0+? by oxidation-reduction titration with Fe?* or with colorimetric
methods) (Walkley and Black, 1934).

iv) Dichromate oxidation with external heat (Mebius, 1960).

Both dichromate methods are rapid, widely used, and require minimum
equipment and skills. The Walkley and Black method that omits heating is not
considered by the specialist as a quantitative method, while the Mebius (1960)
technique that involves heat is considered as quantitative and represents the best
combinations of digestion reagents, heating procedure, and titration reagents in
among the dichromate methods (Nelson and Sommers, 1982). For a long period of
time, a lot of efforts have been made, and solutions have been offered to improve
the titration and to offer the most precise endpoint. The Simakov and Tsyplakov
(1969) method with phenylanthranilic acid seems to be the most accurate and
widely adopted approach.

15
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Soil bulk density has a substantial impact on soil health and is determined by
various parameters such as soil porosity, mineral composition, SOC (soil organic
carbon) levels, texture, structure, and moisture content. To better understand the
soil's physical, chemical, and biological properties, the estimation of p, is of
particular importance. Close relationships of p, with other soil properties are proved
by many authors. Xiangsheng et al. (2016) showed that SOC has a significant
influence on soil p, values, while Walter et al. (2016) emphasizes the importance of
accurate and efficient methods of measuring soil p, when recording soil organic
carbon bulk quantities.

Reproducibility and quality control of the core methods were found to be quite
challenging. Many factors affect the accuracy of p, measurement. Soil depth and
soil types were found to affect the p, measurements, which coupled with
inaccuracies because of a small sample size (Walter at al, 2016). Very detailed
explanations, comparison and evaluations of the methods for ppmeasurementscan
be found in the work of: Campbel (1994), Casanova et al (2016), and AL-Shammary
et al (2018).

2331 Methods for measuring bulk density

Soil bulk density measurement methods typically fall into two distinct categories:
direct and indirect methods. Direct methods differ from each other only in the way
in which the sample volume is determined and it is in this respect that an
assessment must be made as to the suitability of any method for a given purpose
since all the methods have some limitations (Campbel, 1994). Although direct
methods are well-established and use affordable equipment, they are time
consuming and not suitable for rapid and accurate bulk density estimation. To
overcome these limitations, indirect methods have been developed. These
methods are based on the principle of scattering and attenuation of nuclear
radiation when interacting with the soil sample and provide an indirect
measurement of bulk density. Indirect methods involve calibrating the apparatus
by means of samples of known bulk density. (Campbel, 1994).

2332 Core sampling

The core sample method is widely employed for estimating the bulk density of
agricultural soils. (Casanova et al., 2016, FAO 2023). In this method, an open-ended,
metal cylinder is either pressed or hammered into the soil. The core sampling
method is suitable for cohesive soils with water contents close to field capacity,
which is important for heavy clayey soils with a high coefficient of swelling and
shrinking, which can pose significant errors in the results. The approach is also
vulnerable to errors that may occur due to compression or fragmentation of the
core during the insertion of the cylinder.
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In the lab, the mass of the cylinder with the soil sample (before drying) is recorded.
One cap of the cylinder is removed, and soil samples are dried at 105 °C +5 °C for 24
hours or until the constant weight is achieved, to obtain the dry mass of the soil.
After drying the cap is fitted back to the cylinder and the samples are placed in a
desiccator until room temperature is reached. The weight of the cylinder and the
oven-dried mass is recorded.

The bulk density is calculated as a ratio of the net weight (minus the mass of the
cylinder) of the dry soil mass (g) with the volume of the cylinder (cm?) multiplied by
100, to the nearest 0.01 g/cms (FAO_SOP).

2331 Clod method (paraffin-sealed clod)

The clod method, which is conducted in a laboratory environment, is the second
most used methodology for assessing soil p, (Casanova et al.,, 2016). In this method,
soil pp is measured by calculating soil mass and volume using paraffin wax, saran
rubber, or wax mixtures. The method is time-consuming due to its complex and
slow experimental process. The clods must be stable and have a size limit of 4-10
cm in diameter. The immersion and weighing of a coated clod is a complex and
demanding procedure, with the potential for increased errors in measurement.
Casanova et al. (2016) found that the clod approach overestimates values compared
to other direct procedures since it does not consider inter-aggregate pores or gaps.

2.3.3.2 Excavation method (volume replacement)

On the field, a hole approximately 10 cm in diameter is excavated and all material
from the hole is saved in a container. The soil sample collected is dried in a
laboratory at 105° C for approximately 24 h, depending on moisture content and its
mass and water content determined.

The sample volume is determined by filling the excavation with sand from a sand
container (sand bottle). The difference in weight of the sand container before and
after filling the excavation is recorded. The bulk density of the sand in the bottle is
determined with a calibration test in which sand from the bottle is used to fill
cylindrical containers of known dimensions (Campbel 1944). Thus, the volume of
the excavated hole can be calculated and hence the bulk density of the soil.

There are several potential sources of error in the method, but most of them can be
avoided. It is crucial that the sand used is dry, and free of soil debris if sand is reused.
Regular calibration tests are the best possible way to avoid such errors. The best
practice is, if sufficient sand quantities are available, to avoid reuse. Typically, 0.2-2.0
mm sand is used in the excavation method. However, the uniformity of the graded
material is more important on the variation in sand bulk density than its actual size.
Many authors propose different variations of this method to improve its accuracy,
like Crnica (cit. Campbel 1994) who used a sand bottle with a calibrated volume so
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the difference in sand volume before and after filling the excavation corresponds
to the volume of the hole, so a knowledge of the sand bulk density is not required.

2333 Indirect methods

To overcome these limitations, a second group of methods has evolved, in which
the attenuation or scattering of nuclear radiation by the soil sample is used to give
an indirect measurement of bulk density. This is achieved by calibrating the
apparatus by means of samples of known bulk density.

2334 Gama radiation

The gamma radiation method is commonly used to measure soil p, and involves
the use of gamma backscatter density gauges and transmission gauges. The
gamma-ray transmission method is a precise technique for studying soil physical
parameters. The radiation approach allows for precise identification of soil p, due to
the minimal impact of gamma radiation transmission on the soil's physical
structure. Although the backscatter gauge is widely used, this methodology is
costly and complex requiring high-tech equipment and skilled operators. Soil type
and instrument calibration significantly influence measurement accuracy
(Campbell 1994).

2335 Regression methods (PTFs)

Regression techniques, also known as Pedotransfer Functions (PTFs), are
fundamental in modeling cand be used indirectly to estimate the soil ps. Different
approaches, such as multiple linear regression, decision tree analysis, and grouping
methods of data management, have been used to enhance the PTFs for
determining soil pr. Numerous studies have been tested different regression
models to evaluate the py, using other soil properties such as soil organic carbon
content, texture, structure, depth, and water content, and field and climatic
conditions (Al Shammary et al, 2018+++).

According to Viscarra Rossel et al. (2006) standard soil chemical and physical
laboratory analysis has been employed to enhance our comprehension of soil and
evaluate its quality and functions. There is a worldwide need for gathering larger
guantities of high-quality, affordable soil data to be utilized in environmental
monitoring, modeling, and precision agriculture by developing more effective
methods that save time and money. Diffuse reflectance spectroscopy is a viable
option to improve or substitute traditional soil analysis methods, since it effectively
addresses some of their drawbacks. Spectroscopy is a rapid, cost-effective, non-
destructive, relatively simple, and occasionally more precise method compared to
traditional analysis. In addition, a single spectrum enables the simultaneous
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measurement of many soil characteristics, and the approaches may be easily
adapted for field use.

Frequency (Hz)

10° 104 105 106 107 108 10° 10" 10'' 10%2 10%® 10 10'" 10' 10'7 10'® 10" 1020 102! 102 102
T T T T T T T 1 1 T 1 T 1 T T 1 T 1 1 1 1

Wavelength (m)
108 10° 10 103 102 10 1 107" 102 10% 104 105 108 107 10% 10®° 100 101 1012 1012 10-%4

1 1 1 1 I 1 I I 1 | 1 1 1 L I 1 1 1 1 1 1
[}

Microwaves \.I"l‘s,i.‘hle \n‘. _ Soft X Rays Gamma rays >
+ Radio waves '.l ¢ Infrared Ultravialets, " Hard X Rfﬂ
EM GPR, TDOR JERS RADARSAT 1‘1‘ Landsaf TM, SPOT \“.‘ Gamma radiometrics
induction Ultrasound PolSAR H AVHRR, lkonos b
Energy of one photon (eV) 1 .,

\ ~
10" 100 10® 10 107 10% 10% 10* 102 “,Il':l"'Z 107 1 10 102 108 10%.10% 108 107 108
1 T T T T T T k] T T T

1 1 1 1 1 \I‘ 1 1 1

% ,
A Y

| FR | TR |MIR|NIm

1Tmm 15mm 25 25 07 04 01pm  wavelength
10 400 4000 25000 cm?  wavenumber

Figure 2.1. The electromagnetic (EM) spectrum showing the visible and infrared
bands (after McBratney et al.,, 2003).

According to Smith et al (2020) the reflectance of light on soil in the infrared region
(Figure 1) provides the methods for measuring SOC concentration, specifically, in
visible (VIS) 400-700 nm, near infrared (NIR) 700-2500 nm and mid infrared (MIR)
2500-25,000 nm. Predicting the soil carbon percentage of unknown samples may
be achieved by utilizing spectral data and a statistical model that relies on a spectral
library.

For measuring the C content of soil, spectroscopic methods including Near-
Infrared (NIR) and Mid-Infrared (MIR) spectroscopy are highly appealing among the
inexpensive and simple alternative techniques. The last forty years have seen a
significant development of these techniques in agriculture, with a boom beginning
in the late 1980s. These techniques measure the composition of grains, fruit and
vegetables, meat, etc. (Bellon-Maurel & McBratney, 2011).

According to Bellon-Maurel & McBratney (2011), the main difference between the
two methods lies in the fact that absorption in mid-infrared spectroscopy is related
to the fundamental bands of molecular vibration, while absorptions in the near-
infrared are related to the overtones and combinations of these fundamental
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bands. As a result, in comparison to the MIR range, the NIR range has lower band
specificity. Another thing to consider is that light diffuses far more in the near-
infrared than it does in the mid-infrared. Consequently, elements that influence
light diffusion, such as aggregate size and porosity in the physical structure, as well
as the presence of water, which alters the refractive index and, consequently, light
diffusion, will have a significantly greater impact on NIR spectra (Williams and
Norris, 1987)

Absorbance at the electromagnetic radiation wavelengths in the MIR region
(2,500-25,000 nm) is a consequence of fundamental molecular vibrations.
Meanwhile, it is more challenging to characterize combination bands and
overtones than those in the MIR area are the cause of the absorbance in the visible-
near-infrared (vis-NIR; 350-2500 nm) region. Regarding field applications and
instrument portability, Vis-NIR outperforms MIR (Ng, 2022). However, thanks to
technological advancements, portable MIR instruments are now also available (Ji
et al, 2016; Hutengs et al,, 2019). According to Soriano-Disla et al. (2014), MIR is also
more sensitive than vis-NIR to the organic and mineral components of soils.
Numerous studies have demonstrated that MIR, compared to vis-NIR, can produce
more reliable predictions of several soil parameters (Reeves, 2009; Ng et al., 2019).

For measuring C, MIR spectroscopy performs slightly better than NIR, with
prediction errors typically 10-40% lower than with NIR. Both NIR and MIR exhibit
significant prediction errors when the validation and calibration samples differ
significantly, which are mostly explained by bias resulting from poor fit to the new
data (Bellon-Maurel & McBratney, 2011). Multiple research studies have shown that
the most effective near-infrared (NIR) range is within the 1650 to 2500 nm spectrum
(Hummel et al., 2001; Mouazen et al,, 2007; Lee et al.,, 2009; Morgan et al., 2009).

Our knowledge of soil functions and the ways in which land use and climate
change influence soil organic carbon (C) reserves can be improved by measuring
the bulk density of soil. The existing bulk density measurement techniques are
costly, time-consuming, prone to mistakes, and confounded by the requirement to
measure below the soil's surface. When describing the temporal and spatial (lateral
and vertical) change of soil bulk density and associated parameters, these flaws
become more apparent. A method that measures the bulk density of 1-meter soil
cores that are sampled fresh, wet, and in the field using a combination of visible-
near-infrared (vis-NIR) spectroscopy and gamma-ray attenuation was developed
by Lobsey & Viscarra Rossel (2016).

The availability of accurate soil measurements continues to be an obstacle to
applications like precision agriculture and digital soil mapping, despite the ongoing
demand for soil data in these areas. The high cost of collecting soil samples and
conducting laboratory analyses usually limits the amount of information available
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on soil attributes. By substituting for or enhancing conventional analytical
techniques, systems like visible near-infrared spectroscopy (VisNIR) can lower the
expenses associated with laboratory analysis (Ackerson et al., 2017).

Numerous soil parameters have been measured using visible-near-infrared
spectroscopy, or VisNIR. In the lab, VisNIR is often applied to ground and air-dried
soils. It is now possible to obtain VisNIR spectra from in situ soils thanks to recent
advancements in VisNIR apparatus. This method offers several benefits, including
the ability to test soil parameters without requiring the collection, preparation and
laboratory analysis of samples. (Ackerson and others, 2017).

Several statistical approaches have been developed to estimate several physical
and chemical properties from spectral data. Four of them are described below
(Haghi et al., 2021).

2.4.4.1 Partial least square (PLS)

A popular linear regression technique that predicts the relationship between the
spectra and observed values using latent variables is the partial least square (PLS)
approach. The latent variables capture the highest correlation between the spectra
and the observed values, while also reducing the dimension of the original spectra.
The purpose of the PLS technique is to develop a model with the ideal number of
latent variables by extracting the latent variables from the spectral data (Haghi et
al. 2021). The literature (Abdi, 2003, 2010) contains the PLS method's specifics.

2.4.4.2 Support vector regression (SVR)

Over the past few years, support vector machines—a data mining technique—have
gained a lot of popularity. Initially, this technique was created to solve classification
issues using the concept that Vapnik (1995) first presented. Subsequently, this
technigue has been expanded to address regression problems as well. This
method's fundamental idea is to map the non-linearly separable input data onto a
higher dimensional feature space, where a hyperplane can be used to separate the
data points linearly. The data is projected into a higher dimensional space using
kernel functions (linear, non-linear, sigmoid, or radial basis). Each kernel function
requires a distinct set of parameters to be adjusted (Haghi et al., 2021).

2.4.4.3 Convolutional neural network (CNN)

CNN is a subset of artificial neural networks and a deep learning technique. Several
hidden layers, including convolutional, down sampling, flatten, fully connected, and
optional layers (such as batch normalisation), are added to the input and output
layers of a CNN model (Haghi et al., 2021).
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The performance of soil to accomplish their functions depends on its soil quality
(SQ), making its measurement by Soil Quality Indices (SQI) a crucial aspect. But,
because of the multi-functionality of the soil, measuring SQ is by no means easy.
Direct quantification of soil functions requires costly methods and labor (Wiesmeier
et al., 2019) or in some cases, it is not possible to do so directly and must be inferred
from certain soil characteristics (Cardoso et al., 2013). Therefore, the SQI to be
adopted will depend on the indicators used to assess these functions, and there is
not a universal list of SQ indicators widely accepted, since different authors define
SQ in different ways.

The soil quality concept was introduced in the 1960s and 1970s by authors like
Klingenbiel and Montgomery (1961 in Costantini & Priori, 2023) Mausel (1971 in
BUnemann et al., 2018) or Warkentin and Fletcher (1977 in Wienhold et al.,, 2008) as
a framework to guide use and allocation of labor, fiscal, and other inputs to meet
increasing demands being placed on agriculture. Since then, there has been some
terminological controversy (Bonfante et al, 2020; Karlen et al., 2008) about the
appropriateness of the use of the terms Soil Quality, defined as the capacity of a sail
to function within ecosystem boundaries to sustain biological productivity,
maintain environmental quality, and promote plant and animal health (3. W. Doran
& Parkin, 1994; Soil Science Society of America, 2024), Soil Health, defined as the
capacity of soil to function as a vital living system, within ecosystem and land-use
boundaries, to sustain plant and animal productivity, maintain or enhance water
and air quality, and promote plant and animal health (J. W. Doran & Zeiss, 2000) or
even Soil Capability, defined by Bouma et al. (2017) as the intrinsic capacity of a sail
to contribute to ecosystem services, including biomass production, although this
concept has had less impact in the current scientific literature.

In any case, when speaking of Soil Quality or Soil Health, it is necessary to emphasize
the dynamic dimension of the concept, as it describes the situation or condition of
a soil as a consequence of its current or past management, as opposed to inherited
soil quality, which is a reflection of soil-forming factors and includes soil attributes
that will not generally respond to recent management changes (Karlen et al., 2008).
Based on this dynamic aspect, authors such as Bunemann et al. (2018) and
Moebius-Clune (2017) conclude that the terms Soil Quality and Soil Health can be
considered to some extent as equivalent since the original concept of Soil Quality
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has evolved to present soil as a living, finite, non-renewable and dynamic resource
(Munoz-Rojas, 2018).

Multiple attempts have been made to develop indices to synthetically assess Soil
Quality (de Paul Obade & Lal, 20163, 2016b; Jian et al,, 2020; Karlen & Stott, 2015;
Mukherjee & Lal, 2014; Trasar-Cepeda et al, 1998), although the acceptance of a
universal soil quality index (Dumanski et al, 1998) is a highly debated concept,
which may be understood as a somewhat "institutionalized" quality concept (Sojka
& Upchurch, 1999). However, most of them have in common that they are based on
the establishment of a set of biotic or abiotic indicators as the basis of the
assessment, reflecting the multidimensionality of the soil system, and differing
subsequently in the way they interconnect these indicators and reduce their
collinearity to obtain the quality index (BUnemann et al,, 2016; Kosmas et al., 2014).

The assessment of soil quality is related to the evaluation of the ecosystem services
provided by soil. It has been stated that evaluating soil quality requires taking into
account one or more soil functions or ecosystem services (Bouma, 2014; Reinhart et
al,, 2015), although authors such as Vogel et al. (Vogel et al, 2018) establish
differences between the two concepts arguing that “Soil functions are produced by
complex interactions of natural processes and are the basis for the functioning of
terrestrial ecosystems, while ecosystem services and resource efficiency are
defined in the context of the current human perception and may change according
to the societal context”.

Once an agreement is reached about the functions of the soils we want to measure
in a certain ecosystem, the next task is to select the most appropriate soil quality
indicators to calculate the SQI. Soil quality indicators have been defined as
"measuring instruments that provide information on properties, characteristics
and processes, and serve to assess the effects of management practices on a soil at
a given point in time" (Astier-Calderdn et al, 2002). Also, they are defined as
measurable biotic or abiotic soil properties in a time- and cost-efficient way that
contain sufficient information for the quantification of soil functions and that can
be reproducible with a relatively low level of expertise. (Vogel et al., 2018; Wiesmeier
et al,, 2019).

The concept of ‘within ecosystem boundaries’ for soil functionality in both Soil
Quality and Soil Health definitions implies that SQ must be referred to the
ecosystem where it is measured and that each soil has a different capacity to fulfil
the different soil functions (Bloem et al., 2006). For this reason, Sanchez-Navarro et
al. (2015) state that the SQ indicators (and the resulting SQI) must consider the
specific ecosystem in which we work and the soil functions we intend to preserve,
especially those of relevance in the experimental site. According to this, Drobnik et
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al. (2018), indicate that frameworks for the proposal of soil quality indicators are
always discipline-referenced and context-focused. Therefore, meaningful soil
quality comparisons can only be made for a series of soils, at a specific location, with
a known management history. Quality comparisons between different soils are
practically meaningless due to differences in the factors inherent in soil formation
(Karlen et al, 2008). Nevertheless, authors like Kuzyakov et al. (2020) propose an
approach that might allow comparison of soil quality indices in different areas.

There is not a universal list of soil properties that serve as suitable soil quality
indicators for all regions, so a judicious selection of the most applicable indicators
must be done (Burns et al.,, 2006). According to Doran and Parkin (J. W. Doran &
Parkin, 2015), the criteria to select the indicators of soil quality primarily pertain to:
(i) their usefulness in specifying ecosystem processes; (ii) their capacity to include
physical, chemical, and biological characteristics; (iii) their responsiveness to
changes in management and climate,;, and (iv) whenever possible, being
components of existing databases. In relation to sensitivity to management, Vogel
et al. (2018) propose an interesting classification of soil attributes or properties
according to their characteristic time scale of change: "inherent soil properties" that
depend on parent material and soil formation stage, and are not immediately
affected by soil management "soil state variables" observable soil attributes that
can change on short time scales of minutes to days in response to external forcing
and, "functional soil characteristics" falling between the other two categories,
which might change abruptly in response to external forcing but has an
intermediate time scale of change (days to months) as a result of internal processes
and interactions.

Benedetti and Dilly (2006) add to the above criteria the need for indicators to be
understandable and useful for land managers, as well as easy and inexpensive to
measure. Stone et al. (2016) also highlight some other aspects concerning the
necessary skills of the person monitoring the soil, availability of the necessary
equipment in laboratories, the time required for sampling and measurements, the
amount of sample needed for laboratory analyses, or the reproducibility of the
results. Rinot et al. (2019) further emphasize the need for indicators to reflect the
connection between soil functions and management objectives.

Several authors and institutions have developed a list of indicators over the last
decades, accepted by the scientific community, which consider physical, chemical
and biological properties of soils and meet the described requirements to be a
good soil quality indicator. (Carceles Rodriguez et al., 2022; J. W. Doran & Parkin,
1994; Moebius-Clune, 2017; NRCS, 2008; Oliver et al., 2013; Seybold et al., 1997) Other
authors introduce biochemical indicators, as a category, because of the difficulty of
separating chemical and biological processes due to their dynamic and interactive
nature and their sensitivity to any short-term management changes (Bonanomi et
al.,, 2011; Brennan & Acosta-Martinez, 2019; Mondini et al., 2019; Saikia et al., 2019;
Schoenholtz et al., 2000; Scotti et al., 2015).
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However, a survey of 170 soil databases at European level showed that although
over 70% of the country soil databases cover most of the primary pedological and
chemical parameters, water content, contamination with organic pollutants, and
biological parameters are the least often reported parameters. (Cornu et al.,, 2023).
According to these authors, such differences will have consequences when
developing an EU policy on soil quality and using the data to derive soil quality
indicators. Similar results have been found by Valani et al. (2021) who found that
physical indicators appear in 80% of the 92 reviewed papers on soil quality
assessment in integrated crop-livestock-forest systems, chemical indicators in 70%
of the studies and biological indicators in only 33%. In addition, they indicate that
only 20% of the studies integrate the indicators in an SQI. Moreover, several
disparities were identified in the methods employed for soil collection, preparation,
and analysis, necessitating the implementation of harmonization processes to
obtain a useful interpretation and to establish reference values for each indicator
(Hughes et al., 2023).

BUnemann et al. (2018) found in a review of 62 publications and Bastida et al. (2008),
also found in a review of 15 publications, that total organic matter/carbon and pH
are the most frequently proposed soil quality indicators. After these, both groups
of researchers found available phosphorus, various indicators of water storage, bulk
density, texture, available potassium and total nitrogen to be the most frequently
used. Other indicators frequently found by these and other researchers (Allek et al,,
2023; Brichi et al.,, 2023; T. Yang et al,, 2020) were: (i) Chemical indicators: electrical
conductivity, cation exchange capacity, available nitrogen, heavy metals, other
macronutrients, sodicity, salinity, micronutrients and labile C and N; (ii) physical
indicators: structural stability, soil depth, penetration resistance, hydraulic
conductivity, porosity, aggregation and infiltration; and (iii) biological indicators: soil
respiration, microbial biomass, N mineralization, soil enzymes and earthworms.
Zornoza et al. (2015) agree with this presentation of soil quality indicators but warns
of the virtual absence of human health indicators or exposure pathways in soil
guality assessments. Basak et al. (2022) also highlights the need to pay special
attention to the selection of analytical techniques for the measurement of physical,
chemical, and biological indicators of some special soils, such as salt-affected or
alkaline soils.

Costantini and Priori (2023) propose a grouping of soil quality indicators,
susceptible to be affected by changes in soil management, according to their
relevance in providing specific functions, concerning (i) water supply; (ii) oxygen
supply; (iii) nutrient supply; (iv) regulation of runoff; (v) sediment production; (vi)
groundwater recharge; (vii) purifying capacity and regulation of contaminants; (viii)
carbon sequestration; (ix) biological activity and cycling of organic matter and
nutrients; and (x) biodiversity pool, and propose a table with the most relevant and
commonly used in monitoring programmes, which, to a large extent, coincides
with those previously stated by Bunemann et al. (2018) and Bastida et al. (2008)
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Other authors use scientifically well-established composite indices as basal
indicators of soil quality that can participate in the development of the soil quality
index. Thus, Jiang et al. (2025) suggest a standardized framework for evaluating soil
qguality that considers heavy metal contamination and microbial-induced
resilience, by using well-known indices like Shannon-S, Shannon-F, Pielou-S, Chaol-
F, Geo-accumulation index or Nemerow’s pollution index and build two new
indexes Soil Resilience Index, the Soil Contamination Index, to calculate the SQI.

The advent of new technologies, such as near-infrared spectroscopy (NIR), portable
X-ray fluorescence, and remote sensing, along with other non-destructive methods
like X-ray tomography, offers the ability to quickly and inexpensively access a wide
range of soil properties (Askari et al,, 2015a; Chabrillat et al., 2019; Chaudhry et al,,
2024; Munoz-Rojas, 2018; Paz-Kagan et al, 2014; Silva et al, 2023). Real-time
continuous soil monitoring (RTCSM) seems promising (Fan et al., 2022). Machine
learning and artificial intelligence are being used to develop models to estimate
soil quality from the processing of multidimensional data obtained with remote
sensing (Diaz-Gonzalez et al, 2022). Significant progress has been made in
biological and biochemical indicators of soil quality over the past decade. In
addition to the widespread adoption of biochemical, physiological, and metabolic
techniques for determining microbial biomass and respiration (Ashraf et al., 2022;
G. Li & Wu, 2018), the characterization of soil microbial communities is increasingly
used as an indicator of soil biological quality (Orgiazzi et al., 2015). The use of
multiomics approaches can provide a more accurate and realistic view of
microbiome, which can be used for the assessment of soil quality (Maurya et al,,
2020). These techniques are also beginning to provide a deeper understanding of
the functionality of different taxa in soil and the relationship between microbial
diversity and ecosystem functionality.

To include biological indicators in soil quality assessments, Creamer et al. (2022)
have developed an integrated framework for defining the role of soil biota in soil
multifunctionality, using the hierarchical multi-criteria decision structure following
Debeljak et al. (2019). Bhaduri et al. (2022) classify the bio-indicators that have
emerged as a consequence of these new techniques into four categories: (i)
Physiological, which includes indicators such as Microbial Biomass Carbon, N or P,
and Sustrate Induced Respiration; (ii) Metabolic, which includes the analysis of
sterols, proteins or common enzymes for microbial activity, such as dehydrogenase,
phosphatase, urease or beta-glucosidase; (iii) Functional, BiologTM or PLFA for
analysis of microbial communities; and (iv) Molecular, based on the extraction of
DNA or RNA from soil.

Soil Quality assessment needs to include baseline or reference values to enable
identification of management effects on soils (Bunemann et al,, 2018; Karlen et al,,
2008). This baseline can be established at the first time a Soil Quality Assessment is
carried out, so that subsequent assessments can determine the trend of both the
SQI and the indicators used in response to the management decisions made.
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Alternatively, this baseline can be established based on an undisturbed ecosystem
with the same soil, climatic conditions and vegetation cover as the area to be
assessed. (Allek et al., 2023; Bai et al,, 2018). For this to be possible, it will also be
necessary to use standard methods for both soil sampling and analysis of selected
indicators. (Nortcliff, 2002).

However, the need for continuous assessment of soil quality over time by soil
sampling and analytical procedures may involve high costs, which may discourage
the land manager or may overextend the time interval between two successive
assessments (Maharjan et al,, 2024). In this sense, authors such as Read et al. (2016)
propose the Landscape Function Analysis (LFA) method as a conceptual,
methodological and interpretative framework that allows a quantitative
assessment of soil functions. The method is based on the use of 11 visually acquired
soil surface assessment indicators, which relate specific soil properties and
processes. These indicators are used to obtain three integrated indices: soil stability,
infiltration and nutrient cycling, strongly linked to the provision and regulation of
ecosystem services, including the retention of soil, the cycling of water and
nutrients, the production of biomass, and the storage of carbon.

To achieve a standardization of sampling and analysis methods, The International
Organization for Standardization, ISO, works in the development of international
technical standards, contributing to all the Sustainable Development Goals (SDG)
(Figure 1).

14980

Figure 3.1. ISO standards applicable to each SDG. Source: ISO, n.d.

The international standards on environmental sustainability provide a transparent
and pragmatic approach to attain operational excellence, adhere to legal
obligations, and fulfill the expectations of stakeholders. Implementing these I1ISO
standards enables firms to establish themselves as frontrunners, achieve cost and
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resource savings, and earn confidence and respect. (ISO, n.d.). Soil quality standards
are part of this category, which guide sustainable land use and soil management
practices to protect and improve soil health, essential for agriculture, biodiversity,
and carbon sequestration.

An ISO standard is reviewed every 5 years. There are currently 234 soil quality
standards, with 215 published and 19 ‘under development’; in other words, a draft is
being reviewed by the committee to later replace other standards (ISO, n.d.).

In general, ISO 9001:2015 standard is a globally recognized standard for quality
management that contributes to SDG 1, 9, 12, and 14. This standard helps
organizations and industries by defining how to establish, implement, maintain
and improve a quality management system. ISO 9001:2015/Amd 1:2024 provide
additional content to this standard, which will soon be replaced by ISO/CD 9001.

Among the various very important standards of soil quality, most of them refer to
methodologies for the evaluation of several soil quality indicators and properties,
both at field and laboratory levels; even possible recording and monitoring of
changes in dynamic soil properties, by ISO 23992:2022. Many of them are related to
sampling, highlighting:

- 1SO 18400-301:2023 Part 301: Sampling and on site semi-quantitative
determinations of volatile organic compounds in field investigations.

- 1SO 18400-206:2018 Part 206: Collection, handling and storage of soil under
aerobic conditions for the assessment of microbiological processes, biomass
and diversity in the laboratory. This standard contributes to the SDG 3,13 and
15.

- 1SO 18400-203:2018 Part 203: Investigation of potentially contaminated sites.
This standard contributes to the SDG 3,12,13 and 15.

- 1ISO 18400-104:2018 Part 104:. Strategies; I1SO 18400-205:2018 Part 205:
Guidance on the procedure for investigation of natural, near natural and
cultivated sites, and ISO 18400-202:2018 Part 202: Preliminary investigations.
These standards contribute to the SDG 2, 3,12, 13 and 15, and, together, are a
new version and revise |SO 10381-4:2003.

- 1SO 18400-107:2017 Part 107: Recording and reporting. This standard
contributes to the SDG 15.

- ISO_18400-102:2017 Part 102: Selection and application of sampling
techniques, previously ISO 10381-2:2002 and ISO 10381-6:2009. This standard
contributes to the SDG 15.

- ISO _18400-100:2017 Part 100: Guidance on the selection of sampling
standards. This standard contributes to the SDG 15.
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In relation to soil carbon content, ISO 23400:2021 provides the principles for the
determination of the stocks of organic carbon and nitrogen in mineral soils at the
field scale, as well as their variations, ISO 20951:2019 offers suggestions for the
measurement of the fluxes of greenhouse gases (CO2, N20O, CH4) and ammonia
(NH3) between soils and the atmosphere, ISO 17184:2014 determines carbon and
nitrogen by near-infrared spectrometry (NIRS), ISO 16703:2004 and ISO 10693:1995
determines carbonate and hydrocarbon in the range Cl10 to C40 by gas
chromatography, respectively. Besides, ISO 16072:2002 establishes laboratory
methods for determination of microbial soil respiration. Other standards such as
ISO/AWI 21251 and 1SO/CD 17505 will soon be published, which offer guidelines for
determining the amount of organic carbon stored in soils based on their
biogeochemical stability or residence time, as well as the temperature-dependent
differentiation of total carbon (TOC400, ROC, TIC900) in soil and waste. On the other
hand, there are also specific standards that guarantee the proper use of agricultural
machinery and thus soil and environmental health, such as ISO 8947:1993, even
others related to agricultural soil water management (e.g. ISO 16075-6:2023).

Finally, it is important to note that there are also national organizations and
standards equivalent to ISO. For example, UNE is the Spanish Standardization
organization in ISO and others such as IEC, CEN, CENELEC, ETSI and COPANT. It
establishes 135 current soil quality standards with international equivalences (UNE,
n.d.).

Soil quality indices (SQI) have been defined as the ‘minimum set of parameters that,
when interrelated, provide numerical data on the capacity of a soil to carry out one
or more functions (Bastida et al, 2008). The different SQI are obtained by
integrating into a formula different soil indicators that represent the set of soil
properties relevant for SQ status. The development of effective, simple and reliable
SQI must also allow for measuring the changes of SQ over time, in response to
changes in land use, and to quantify the effects of agricultural management
practices on SQ.

Many of the soil quality indicators are closely related and provide redundant
information. For simplicity and a better understanding and calculation, the number
of indicators can be reduced by taking into consideration the correlation between
them, making it important to select those indicators that are more appropriate for
fulfilling the chosen soil function quantified by the SQI. This SQI should be selected
with the minimum set of indicators (minimum data set or MDS) that, when
integrated in a formula, provides numerical data on the capacity of a soil to carry
out one or more functions (Acton & Padbury, 1994; Andrea et al., 2018; Raiesi, 2017,
Thakur et al., 2022).
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Different methods can be used to reduce their number in order to build a
meaningful and easily understandable SQI: algorithmic, arithmetic or statistical
methods such as Analysis of Variance (ANOVA) (D'Hose et al., 2014, Rinot et al., 2019),
Principal Component Analysis (PCA) (de Andrade Barbosa et al., 2019; Mukherjee &
Lal, 2014), Partial Least Squares-regression (PLS-R) and Partial Least Squares-
discriminate analysis (PLS-DA) (Paz-Kagan et al, 2014), Redundancy Analysis
(RDA)(Costantini & Priori, 2023), Factor Analysis (Vasu et al., 2016) and expert opinion
(EO) (Dal Ferro et al,, 2018; Giannetti et al., 2009).

Initially, MDS selections were based on expert opinions (J. W. Doran & Parkin, 1994).
Subsequently, the reduction in the number of indicators was performed by
multivariate techniques, with multiple regression and principal component
analyses being the most widely used. Principal component analysis is a well-known
procedure to lessen unnecessary data by correlating variables. With the above-
mentioned methods, the number of soil quality indicators is often reduced
between 6 and 8. Andrews, Karlen, et al. (2002) concluded that both, the expert
opinion and statistical methods are valid to select the minimum set of indicators
while reducing their number. The main disadvantage of the statistical methods
resides on the need for a wide set of data.

After the selection, MDS indicators are applied a scoring function based on their
actual effects on the accomplishment of the selected soil functions, where every
indicator measurement is first interpreted and then converted to a value usually
between 0 and 1 using standardized scoring functions (Andrews, Karlen, et al., 2002,;
I. Hussain et al., 1999). This scoring can be done by either linear or non-linear
procedures (X. Liet al,, 2019). Andrews, Karlen, et al. (2002) compared linear and non-
linear methods for scoring, and concluded that they do not differ much, but that
the latter requires a deeper knowledge about each indicator. Nonetheless, they
recommended non-linear methods, because they are often more representative of
the complexity of the soil functions compared to the linear method for scoring.
Thus, generally, non-linear scoring methods are preferred over linear scoring to
represent this complexity. Assessments of soil quality indicators using standard
non-linear scoring functions include i) more is better, ii) less is better, iii) optimum
range, or iv) undesirable range (Karlen & Stott, 2015), with more is better and less is
better being the most used in soil science, although a combination of them is
frequently used depending on the soil quality indicator.

Andrews, Karlen, et al. (2002) explain the shape of the curves used for scoring as
follows: Some indicators follow typically a variation of a bell-shaped curve where the
‘mid-point is the optimum’; a sigmoid curve with an upper asymptote for the
scoring ‘more is better’, or a sigmoid curve having a lower asymptote for the ‘less is
better’ function. The assignment of the curve can be determined according to
agronomic and environmental function using literature review and by expert
opinion. Unfortunately, as many authors underline, the shape of the curves and,
therefore, the scoring of soil quality indicators, will always remain controversial
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partly due to the lack of information, partly due to the conflictive curvilinear pattern
of various indicators and partly because the use of expert opinion is controversial
itself (Merrington et al., 2006).

After the scoring of soil quality indicators by the chosen methods, additive and
weighted additive SQI are built. In the simple additive index, the values (or ranges)
of the soil quality indicators are scored and the SQI is the summation of each
individual value (Amacher et al.,, 2007, Mukherjee & Lal, 2014). Nonetheless, if the
evaluated soil functions differ significantly in importance, then a weighting of the
soil indicators representing the desired soil functions is required. In fact, the first
multiparametric SQI established by Karlen et al. (1994a) already weighted the
selected soil indicators based on their role concerning the predefined goals
defining SQ. This approach has been used to assess the impact of management
practices for agricultural soils (I. Hussain et al.,, 1999; Lima et al., 2013) and for natural
forests (Melo Filho et al, 2007). Although the systems based in Karlen and Stott
(2015) have been widely adopted, weighting of the indicators is subjective and is
not supported by any statistical method.

Finally, the obtained SQI values from the equation in different soil conditions and/or
over time are discussed and eventually validated against the perceived functioning
of the natural ecosystem, while in agricultural soils, they are more often validated
against yield data, and sometimes against Sustainable Yield Index (Askari et al,,
20153; I. Hussain et al,, 1999; S. Li et al, 2016; Mukherjee & Lal, 2014; Sharma et al,,
2005). Figure 2 summarizes the procedure followed to select the best SQI.

Kuzyakov et al. (2020) propose an approach that would allow comparison of soil
guality indices in different areas. The SQIl-area approach is based on a comparison
of the area within the radar plot produced from the group of individual soil
parameters that have been selected to compose the SQI. Each individual soil
parameter must be standardized to unity (1.0), using the base value of the indicator
corresponding to an undegraded soil (in most cases a natural ancestor or analogue
saoil). This standardization guarantees, according to the authors, the comparison of
any SQI with any number of parameters. From the standardized values, a radar
diagram will be constructed for each soil so that the comparison of the areas
covered by each soil will reflect the differences in quality.

35



iterrey Co-funded by
Euro-MED the European Union

CARBON 4
SOIL QUALITY

[ Define Objectives J

v
Select indicators for target soil functions 1
within ecosystem boundaries

v v

Expert Opinion based on ]

[ Physical Chemical Biological J [ soil functions

y Y
[ Minimum Data Set ] Soil Quality Indicators
supporting soil functions, i.e.
nutrient cycling, salinity,
water availability and sodicity

y
[ Scoring Function J

I
v ¥

( Linear Scoring } I Non-linear Scoring ]

I I
! ¥ ! !

L Additive ’ Weighted Additive} ‘ Additive I Weighted Additive

I I I
v
[ Soil Quality Index }

Figure 3.2. Procedure to establish a Soil Quality Index. Based on Thakur et al. (2022)
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Efforts to apply satellite or airborne imaging spectroscopy to estimate SQIl and crop
productivity are emerging fields. Several studies have attempted to apply near-
infrared (NIR), mid-infrared (MIR), and vis-NIR spectroscopy to assess SQ in both
field and laboratory settings because these methods are rapid, cost-effective, and
nondestructive (Liu et al.,, 2020; Xia et al.,, 2018; Zornoza, Guerrero, et al., 2008).

An integrative soil quality index of worldwide use is often desired but, besides the
difficulty inherent to its construction, its utility is dubious, since soil quality is often
better evaluated for the accomplishment of specific soil functions that vary
according to the type of soil (Simon et al,, 2022). Therefore, there is no extensive SQI
that can be accepted as a universal approach across scales and regions.

Bastida et al. (2008) reviewed many different SQIls and developed an understanding
of their advantages and disadvantages. The authors first distinguished between
simple and multi-parametric SQI. They mentioned simple SQI such as the
metabolic quotient (qCO2 respiration to microbial biomass ratio), the ratio between
microbial biomass C to total organic C ratio, and enzymatic measurements that
relate to microbial biomass. The authors acknowledged that, although a SQI based
on one single parameter is easy to calculate they often lack information; a limitation
not much improved by using two SQ indicators. A single indicator cannot
encompass all soil functions of concern; therefore, multiple-soil attributes are
usually required for SQ assessment. Thus, several multi-parametric indices have
been developed to obtain SQ indices that provide and integrate more information
on the quality of an agricultural soil and, in a less number, for non-agricultural soils.
The first multi-parametric index for the quality of agricultural soil was established
by Karlen et al. (1994a). This framework uses selected soil functions, which are
weighted and integrated according to the following equation:

SQI = gwe(wt) + gwt(wt) +qrd(wt) + gspg(wt)

where: gwe is the rating for accommmodating water entry; gwt is the rating for water
transport and absorption; grd is the rating for resisting degradation; gspg is the
rating for supporting plant growth and wt is the numerical weight for each soil
function.

Glover et al. (2000) use the same SQI for apple production in conventional organic
production, due to its flexibility, ease of use, and its potential for interactive use by
apple producers. Their SQI uses the same soil functions, which are also weighted
and integrated into a SQI equation.
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Masto et al. (2007) developed this SQI a little more adding the soil functions (and
their corresponding indicators) resistance to biochemical degradation, and the
supply of plant nutrients and sustainability of crop productivity (in replacement of
plant growth). The aim of their work was to evaluate and quantify the long-term
effect of different fertilizers and farmyard manure treatments.

Andrews, Karlen, et al. (2002) were the first to compare multi-parametric methods
designed to establish the quality of agricultural soils. Their work can be considered
the mathematical base that many authors have followed to establish SQI for
agricultural ecosystems. The SQI proposed by Andrews, Mitchell, et al. (2002) is as
follows:

SQI =} 0.61- SOMi + 0.61-SEGi + 0.16:SpHi + 0.16.SWSA| + 0.15-Szni + 0.09-SBDi

where S is the score for the subscripted variable and the coefficients are the
weighting factors derived from the PCA.

Even though SQI was proposed by Karlen et al. (1994b, 1994a) and Andrews, Karlen,
et al. (2002); Andrews, Mitchell, et al. (2002) have been widely used, some authors
have looked at other alternatives. Kang et al. (2005) used a trigonometric approach
based on three subindices (nutritional, microbiological and crop-related) to
establish a Sustainability Index. Koper & Piotrowska (2003) on their side, established
a Biochemical Index of Soil Fertility to compare the effect of organic and mineral
fertilization. This index classifies soil fertility in low, average, high and very high
fertility categories. While physical and chemical indicators have been widely used
to elaborate SQI, only a few of them have used enzymatic activity measurements
despite the fact that enzymes are sensitive indicators of changes in soil In this
regard, using various enzymatic activities, Puglisi et al. (2006) developed three
indices of soil alteration to quantify soil deterioration caused by agricultural
practices such as crop density and the use of organic fertilizers in different regions
of Italy.

The assessment of SQ is, of course, of similar if not higher importance in no
agricultural soils, and a few SQI have been proposed with this aim. In this regard,
Amacher and collaborators proposed a new SQI for assessing forest soil health
(Amacher et al., 2007), and, as previously commented, Melo Filho et al. (2007) used
the methodology proposed by Karlen et al. (1994a) to assess the impact of
management practices in natural forests of Brazil. Considering the effects of soil
management, Burger and Kelting (1999) elaborated a soil quality index specifically
for pinewoods of the species Pinus taeda, using bulk density, water table depth, N
mineralization, depth aeration and biological activity as suitable soil quality
indicators, applying a method like that of Karlen et al. (1994a). Bastida et al. (2006),
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for their part, used an approach based on Andrews, Karlen, et al. (2002) and
established a Microbiological Degradation Index for natural soils in a semiarid
climate. This index emphasizes the use of biochemical and carbon-related soil
parameters in the establishment of the SQI, which aims to establish a threshold,
below which policymakers should act to counter the negative effects that may lead
to desertification in semiarid climates.

Soil quality can be assessed using different approaches: through qualitative
evaluation of soil indicators, usually done in the field, or performing analyses for
guantitative measuring. Soil quality assessment tools are needed to quantify
effectiveness of various management practices (Chang et al., 2022) and, for that
purpose, soil characteristics are needed to evaluate soil quality, soil health and soil-
based ecosystem services (Cornu et al.,, 2023). In recent years, several authors have
reviewed extensively soil quality and soil quality assessment (Bunemann et al., 2018;
Rinot et al, 2019), differentiating between analytical assessments and in-field
assessment approaches; in this section, we will review, in a synthetic way, tools,
protocols and databases that could be useful for those who intend to perform an
assessment of soil quality or health. The web addresses cited in this section were
last visited on 19/06/2024.

1. United States:

o USDA NRCS Soil Health. This program focuses on promoting soil health
through sustainable practices and monitoring soil conditions
https.//www.nrcs.usda.gov/conservation-basics/natural-resource-
concerns/soils/soil-health

o USDA NCRS Soil Quality for Environmental Health,
(http://soilguality.org/home.html) provides tools for soil quality
assessment like

1. Qualitative Scorecards

2. Field test Kits, like Soil Quality Test Kit
(http://soilquality.org/tools/test kit.html)

3. Lab-based assessment methods

a) Soil Management Assessment Method (SMAF).
http://soilguality.org/tools/smaf_intro.html

b) Cornell Soil Health Assessment (Comprehensive
Assessment of Soil Health (CASH))
https://soilhealth.cals.cornell.edu
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c) SHAPE, builds upon conceptual frameworks established by
the SMAF and CASH protocols. (Nunes et al., 2021)

USDA NRCS Web Soil Survey (WSS) provides soil data and information
produced by the national Cooperative Soil Survey, useful to assess soil
quality https://www.nrcs.usda.gov/resources/data-and-reports/web-soil-

survey

USDA-ARS Range Management Research Unit, Jornada Experimental
Range: Land Potential Knowledge System. (Land PKS) It aims to support
land managers with open-source tools that allow them to improve soil
health and productivity. https://landpotential.org

Agroecosystem Performance Assessment Tool (AEPAT): a computer
program used to evaluate the agronomic and environmental
performance of management practices in long-term experiments
(https://catalog.data.gov/dataset/agroecosystem-performance-
assessment-tool-f85eb)

2. European Union:

(0]

European Soil Data Centre (ESDAC): Operated by the Joint Research
Centre, ESDAC provides data and resources related to soil quality in
Europe (https://esdac.jrc.ec.europa.eu).

LUCAS Soil Survey: The Land Use/Cover Area frame statistical Survey
(LUCAS) includes soil sampling to monitor soil quality and health across
Europe (https://esdac jrc.ec.europa.eu/projects/lucas).

Interactive Soil Quality Assessment in Europe and China for Agricultural
Productivity and Environmental Resilience (ISQAPER) aims to provide
decision makers with science-based, easy to apply and cost-effective
tools to manage soil quality and function. (https://www.isgaper-

project.eu/)

3. France:

(0]

GiSSOL (https://www.gissol.fr/le-gis). French soil information system to
meet the demands of public authorities and society as a whole.

4, Ireland:

(0]

(0]

Soil Quality Assessment Research Project (SQUARE): Toolbox for
farmenrs to assess soil structural quality.
(https://www.teagasc.ie/environment/soil/research/square/)

Irish Soil Information System (http:/gis.teagasc.ie/soils/)
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5. Netherland:

0]

National Soil Quality Monitoring Network
(https://www.rivm.nl/en/node/39431)

6. Canada:

(0]

(0]

Canadian Soil Information System (CanSIS): Managed by Agriculture and
Agri-Food Canada, CanSIS provides soil data and maps for soil quality
assessment (https://sis.agr.gc.ca/cansis).

National Soil Health Strategy aims to improve soil health, promote
sustainable agricultural practices and ensure environmental resilience
for Canada's future (https://soilcc.ca/soilchampions/national-soil-health-

strateqgy/).

7. Australia:

(0]

(0]

(0]

8. India:

(0]

9. Brazil:

(0]

Australian Collaborative Land Evaluation Program (ACLEP): This program
provides national soil data and maps for monitoring soil quality
(https://www.clw.csiro.au/aclep/).

National Soil Research, Development, and Extension Strategy: A

collaborative effort to improve soil health and quality through research
and monitoring (https://www.agriculture.gov.au/agriculture-land/farm-
food-drought/natural-resources/soils/national_soil_rd_and_e_strategy).

Soil Quality Initiative. It is the result of a collaboration between The
University of Western Australia, Department of Agriculture and Food
Western Australia, Grain Research and Development Corporation and
South Coast Natural Resource Management. It aims to Establish
benchmarked sites to identify and highlight the nature and extent of soil
biological, chemical and physical constraints to production systems and
to provide the basis of an ongoing soil quality monitoring and education
program. https://www.soilquality.org.au/

Soil Health Card Scheme: Launched by the Ministry of Agriculture, this
program provides soil health cards to farmers, detailing soil quality and
recommendations for improvement (https://soilhealth.dac.gov.in/home).

Brazilian Soil Information System (SiBS): Managed by Embrapa, this
system provides soil data and maps for monitoring soil quality
(https://www.dpi.inpe.br/Ambdata/English/soil_map.php).
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o Brazilian Soil Spectral Service (BraSpecS http://besbbr.com.br). It can be
used to predict soil attributes, such as soil texture, soil organic carbon
content, and other soil quality indicators.

10._United Kingdom:

o National Soil Inventory (NSI): Managed by the Centre for Ecology &
Hydrology (CEH), the NSI provides soil data for monitoring soil quality
(https://www.landis.org.uk/).

o Countryside Survey: Includes soil sampling to monitor changes in soil
quality across the UK (https//www.ceh.ac.uk/data/monitoring-
programmes).

11. New Zealand:

o National Soils Database (NSD): Managed by Landcare Research, the NSD
provides soil data for monitoring soil quality and health.
(https://soils.landcareresearch.co.nz/tools/national-soils-database/nsd-
development/).

o Soil Quality Monitoring Programme: Conducted by regional councils, this
program monitors soil quality indicators on a regional basis
(https://environment.govt.nz/assets/publications/Land-and-soil-
monitoring_A_guide_for_SoE-and-regional-council-reporting.PDF).

12. South Africa:

o South Africa National Land-Cover Datasets: Provides soil data and maps
for monitoring soil quality.
(https://egis.environment.gov.za/sa_national_land_cover_datasets).

13. African Union:

o African Fertilizer and Soil Health Action Plan
(https://au.int/sites/default/files/newsevents/workingdocuments/43470-
wd-2. EN_Africa_Fertilizer_and_Soil_Health_Action_Plan_VI_170523.pdf).

o Soil Information System for Africa (Soils4Africa).
(https://www.isric.org/projects/soils4africa)

14.0Others:

o Biofunctool: assesses in field, quickly and synthetically, the impact of
agricultural practices on soil health with a multicriteria approach
(https://www.biofunctool.com/the-concept)

o Soil Navigator: A decision support system for assessing and optimizing
soil functions. (http://www.soilnavigator.eu)
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o Soil Health Calculator: https://agithub.com/jinshijian/SoilHealthCalculator
(Jian et al,, 2020)

o Solvita Soil Health Test: https://solvita.com/soil/

There is increasing interest in in-field assessment of soil quality. Field assessment
generally does not involve special analyses, delivers immediate results, and can be
easily performed by farmers, allowing self-checking and monitoring the condition
of their soils and making management decision (Hughes et al,, 2023). Visual soil
evaluation is the most commmon procedure for field soil quality assessment.

In the last decades, different methods of visual evaluation of soil quality have been
developed globally. Among the most widely used are the Visual Soil Assessment
(VSA) (Shepherd et al,, 2008), the Visual Evaluation of Soil Structure (VESS) (Ball et
al,, 2007; Guimaraes et al., 2011), Visual Soil-Fast (McGarry, 2006), SOilPak (McKenzie,
2001), the Muencheberg Soil Quality Rating (Mueller et al., 2014), and more recently,
the Cropland In-Field Soil Health Assessment (USDA, 2020). (Reviews on visual soil
assessment methods: Ball et al,, 2017; BUnemann et al., 2018).

All these methods visually assess parameters or indicators linked to soil quality, and
some of them, such as the VSA method, also include plant quality indicators.
Normally, only soil physical and biological properties are evaluated in field, although
some methods, such as VS-FAST, also include measurement of some soil chemical
properties (labile organic carbon or soil pH), using field-test kits (BUnemann et al.,
2018). In general, the indicators assessed are very similar across these methods. The
most evaluated physical and biological properties are soil structure and
consistency, soil porosity, soil color, soil texture, aggregate stability, soil mottles,
water infiltration, presence of tillage pan, surface ponding, biological diversity
(usually earthworms’ presence), root depth and rooting development, soil crusting
and erosion.

Each of the indicators is given a visual score, considering the criteria or the scoring
system of the method where several levels or categories are established (for
example, three score levels in VSA method: poor (0), medium (1) or good (2); or 5
levels of soil structure in VSEE). Usually, the evaluation is made comparing the field
sample with photographs or descriptions of the levels. Because some indicators
can be relatively more important in the assessment of soil quality than others, the
individual score values are usually weighted; VSA provides a x1, x2 or x3 factor
depending of the relevance of the factor, and finally, an overall quality score or
ranking is obtained, which indicates the state of the soil. There are available specific
VSA guides for general land cover categories and for specific crops (Shepherd et al,,
2008). The “Cropland in-field soil health assessment method”, after the visual scores
obtained informs of the risk of four main threats (compaction, soil organic matter
depletion, soil organisms habitat loss or degradation and aggregate instability).
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Visual field assessment methods have been proven effective enough for
discriminating soil quality across different soil types and land use and management
practices, in different climates (Pulido Moncada et al., 2014) and are well-suited for
monitoring changes in some soil indicators (Ball et al, 2017). Close relationships
between visual soil evaluations and quantitative laboratory-based soil measures
have been demonstrated (Emmet-Booth et al,, 2016). In this sense, Ball et al. (2017),
in a study about the application, limitations and opportunities of the main visual
soil assessments methods, described research results that show a close relation
between measured values of soil organic carbon (C) and scores of the VSA soil C
index (Cloy et al., 2015), and a positive correlation between SOM and VSA scores
(especially soil color scores) (Newell-Price et al, 2013), indicating the value of this
visual techniques for estimating SOC.

Field assessment of soil quality can particularly benefit from new technologies,
including Al, through the development of interactive tools that can make the
process easier, quicker, and more accurate. Some studies have explored the use of
smartphones to predict or estimate soil properties. Many of these works are based
on measuring color and analyzing images obtained with smartphone cameras to
predict or estimate parameters such as SOM (Soil Organic Matter), SOC (Saoil
Organic Carbon), or iron content in the soil (Aitkenhead et al., 2020). In recent years,
many mobile apps have been developed and made available in app stores for
estimating different soil properties, although their true utility needs to be
determined. Very recently, Sinclair et al. (Sinclair et al,, 2024) conducted a study
where they found a total of 337 apps for estimating soil properties, of which 32 were
reviewed and analyzed using a rating scale that included 10 parameters
(functionality, efficiency, quality,among others). One of the main conclusions of this
study is the lack of functionality, of most of the apps evaluated, that they were
unable to adequately identify color and quantify soil properties from captured
images. In this study, the app LandPKS (https//www.landpotential.org/) stood out
with the highest ratings, particularly in functionality. This app has a specific Soil
Health module that allows users to track soil health of their land by visually
estimating soil health indicators (according to the NRCS method of the USDA), in
addition to entering basic soil data. Users are guided in the visual soil evaluation,
and after introducing the scorings and some additional data, they can download
their reports about their soil health. The iISQAPER app is a similar app developed by
the EU Horizon-2020 project ‘Interactive Soil Quality Assessment in Europe and
China for Agricultural Productivity and Environmental Resilience’ (iISQAPER,
http://www.isgaper-project.eu/). This app, like LandPKS, guides the user in the
visual determination of soil quality indicators.

SQI tested in arid and semi-arid zones other than the Mediterranean areas are
included here to expand our knowledge about their utility in the context of our
project. In this sense, Sanchez-Navarro et al. (2015) state that the soil quality
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indicators and the resulting SQI must consider the specific ecosystem in which we
operate and the soil functions we intend to preserve in general, but also those of
special relevance to the experimental site. The chosen SQI must be adaptable to
local or regional conditions and, therefore, the parameters needed to determine
changes in soil quality, and then, the most suitable SQI, surely differ between a
semi-arid wheat field in the Mediterranean and a rice paddy in tropical areas
(Granatstein & Bezdicek, 1992; Jordan Vidal, 2023).

Mediterranean soils, as their name implies, are formed in areas with a
Mediterranean climate. The Mediterranean climate is characterized by well-defined
seasons, with rainy winters and warm summers that are generally dry. In addition
to the Mediterranean Sea environment, the Mediterranean climate includes areas
such as California, central Chile, South Africa (Cape region) and Western Australia
(Perth).

Mediterranean soils can evolve rapidly and present different physical
characteristics due to the occurrence of various processes. The first is the
accumulation of organic matter, but processes of decarbonation, clay illuviation,
rubefaction and pseudogleyzation also affect them (Torrent et al,, 2023).

However, inadequate land management can lead to a rapid loss of soil quality with
a reduction in the abundance and diversity of soil microorganisms. In this sense,
agricultural land management is one of the most important anthropogenic
activities that alters soil characteristics, including physical, chemical and biological
properties (Burton et al, 2022; Philippot et al, 2024; T. Yang et al, 2021). On the
Mediterranean coast, the main soil threats are desertification, erosion and loss of
organic matter. Although some soil properties cannot be easily modified (such as
texture), soil quality can be improved by implementing good management and
conservation strategies. Among these strategies, the use of temporary vegetative
covers and the incorporation of compost have great potential for success, if applied
carefully considering the crop’s water needs. These strategies provide various
benefits to the agro-ecosystem, such as reducing erosion, accumulating organic
matter in the soil, controlling weeds and pathogens and providing nutrients (Ding
et al, 2021; Hallama et al,, 2019; Kozacki et al.,, 2024; Martinez-Mena et al,, 2020;
Saqguee et al,, 2023).

Improving soil quality usually takes many years (it depends on the climate, the soil
type and the management, for example), however, cover crops slightly improve soil
guality parameters already in the first years of cultivation (Sastre et al.,, 2018). Soil
organic carbon concentrations increase over the years in conservation
management soils (no tillage), especially in the upper layers (Tedone et al., 2023).

Cover crops, especially green manures, affect the fungal composition of the soil,
increasing the abundance of symbiotic soil fungi and decreasing the abundance of
pathogenic fungi (Ding et al., 2021; R. Yang et al,, 2023). Green manure cultivation
(sole or intercropping) is an important agricultural practice that effectively
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increases soil fertility, soil quality, and improves the ecological environment. Green
manure can conserve water and soil, reducing disease occurrence (Campanella et
al,, 2020; Saquee et al,, 2023) and improving subsequent crop yields (Amede et al,,
20271; Gao et al,, 2024; Xu et al., 2023).

Applying compost (including shredded pruning wood) to agricultural land is a
reliable way of improving the physical properties of most soils, especially those with
poor structure and low levels of organic matter. Changes in the physical properties
of soils with compost include bulk density, infiltration rate, hydraulic conductivity,
water content, aggregate stability and porosity. Compacted soils have a higher bulk
density and, depending on the degree of compaction, can limit root growth and
water infiltration (Moraes et al, 2020; Zhang et al, 2024). Soils managed with
compost and cover crops tend to increase their water infiltration capacity (higher
hydraulic conductivities) and modify their porosity distribution function, resulting
in a greater number of larger pores, which favors rapid water circulation at depth
and aeration of the profile (Blanco-Canqui et al., 2022; Edwards et al., 2023).

The long-term application of compost to the soil improves the physical and
hydrological properties and fertility of the soil (Meena et al., 2020). The application
of compost increases water retention and infiltration, enhances the release of
nutrients for plant uptake and reduces leaching (Suvendran et al., 2024). It also
increases soil organic matter and organic carbon content through carbon fixation
by plants and microbial activity (Suvendran et al,, 2024). The conservation approach
offers certain advantages as a long-term approach to enhance crop productivity,
soil quality, and environmental effects, therefore promoting more sustainable
scenarios in agricultural systemes.

Andrews, Karlen, et al. (2002) describe nicely the management goals intended for
vegetable production in Northern California and the soils functions supporting
their achievements maintaining or improving soil fertility. In this sense, the authors
selected crop productivity, water cycling and environment protections as the most
significant goals that can be reached by selected physical, chemical and biological
properties of the soils, namely their nutrient cycling, water availability, soil stability
and support, filtering and buffering capacity, soil resistance and resilience and,
finally, biodiversity abundance. This list of properties led to the elaboration of an
easy SQI following the additive model based on 7 indicators: pH, mineralizable N (or
alternatively microbial mass Carbon), aggregate stability, bulk density, available
water capacity, electrical conductivity and Na absorption ratio, the last two of
special interest in arid zones.

Sanchez-Navarro et al. (2015) found out that different statistical analyses are useful
for selecting the most appropriate indicators for Mediterranean semi-arid soils. The
SQI based on the selected indicators explained about 80% of the accumulated
variance, with porosity and water availability as the most sensitive physical

46



nterreg Co-funded by
Euro-MED o the European Union

CARBON 4
SOIL QUALITY

indicators for the ecosystems, while organic carbon and K+ contents were the most
sensitive chemical indicators.

Working with soils under semiarid conditions in Spain, Zornoza et al. (2007);
Zornoza, Mataix-Solera, et al. (2008) established and tested two equations using
multilinear regression systems focusing on evaluating the environmental quality of
soils under natural vegetation. The first equation established a correlation between
nitrogen and various enzyme activity and physico-chemical metrics, which applies
to Mollisols. The second defined soil organic carbon using comparable indicators
and is applicable to Entisols.

More recently, Raiesi (2017) assessed long-term crop cultivation effects on soil
quality index (SQI) in rangelands of western Iran and determined that organic
carbon and salinity were the key indicators of soil changes in a region where long-
term cultivation has severely degraded SQ in native rangelands, limiting crop
productivity to 52-64% of their potential capacity.

In summary, the above information describes the different procedures that can be
followed to measure SQ establishing SQI based on selected soil quality indicators
in agricultural and no agricultural soils, focusing especially in Mediterranean and
other arid and semi-arid zones of the planet. As Bastida et al. (2008) state physical
and chemical soil properties are more often included than biological parameters in
the calculation of SQI, despite that biological changes can be more sensitive and
precede perceived changes in SQ. Therefore, we suggest a more ample use of
biological soil properties, especially of those more related with the capacity of the
soil to function as a C sink and the management techniques improving them (S. Li
et al,, 2016).
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The complex array of living organisms known as soil organic matter (SOM) includes
fungi, bacteria, and various phases of decomposition of plant and animal residue. It
also includes humus, a stable substance that bears little resemblance to the
organisms from which it is derived. SOM's composition is dominated by carbon (C),
hydrogen, and oxygen, with minor amounts of nitrogen, phosphorus, and sulfur.
This is because SOM originates from living tissues. The concentration of soil organic
carbon (SOC) in grams per kilogram or mass per hectare (g/ha) to a specific depth
expresses the levels of SOM. When net atmospheric CO2 removal is accomplished
i.,e.when Cinputs (non-harvestable net primary productivity) exceed C outputs (soil
respiration, C expenses associated with fossil fuels and fertilizers), carbon
sequestration takes place in managed soils. An added benefit of soil C
sequestration is that all of its methods adhere to sustainable agriculture principles
(e.g., reduced tillage, erosion management, diversified cropping systems,
enhanced soil fertility).

More than ever, soil organic matter models are now utilized to extrapolate our
knowledge of SOM dynamics over time and space, allowing us to evaluate C fluxes
from entire regions or continents. Numerous research works have implemented
techniques to evaluate SOM dynamics on a regional, national, and international
level (Le Noé et al,, 2023). Policy makers at the national, regional, and international
levels are increasingly using soil organic matter models, as seen in the post-Kyoto
discussion over the terrestrial biosphere's capacity to store carbon. Our existing
SOM models continue to encompass a range of theories and levels of
understanding. Future advancements in SOM models will deepen our
comprehension and enable the adoption of truly predictive models—one that does
not require site-specific calibration. These advancements will lower the uncertainty
surrounding SOM model predictions and enhance its estimations.

Athorough review of SOC modelling was carried out based on recent meta-analysis
reviews, published in the relevant literature (De Rosa et al., 2024; Le Noé et al,, 2023;
Tadiello et al, 2023). Our understanding of the environmental and management
controls of soil carbon sequestration in agricultural environments has improved as
a result of the thorough descriptions of experimental data. The rate and extent of
soil C sequestration are primarily determined by the amount and quality of C
entering the soil and how that C interacts with the soil biophysical environment. It
has been demonstrated that the amount of C that is incorporated into the soil
through organic amendments, crop residues, and roots influences the course of
SOC over time. It is almost certain that management techniques aimed at
maximizing nutrient availability and establishing nutrient reserves—such as
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fertilization and crop rotation with legumes—will increase soil C stocks. Crop
residue quality and the time of its soil integration both affect the decomposition of
carbon and, consequently, the storage of carbon in the soil.

The extent of soil disturbance plays a significant role in controlling the
decomposition and retention of C in soil by influencing soil aggregation. Given this,
one of the most important technological advances of the past 30 years has been
no-tillage agriculture, which enables farmers to raise crops profitably while
lowering erosion and enhancing the quality and quantity of soil organic matter.
Numerous models depicting the dynamics of SOC have been created since the
early 1930s for a range of temporal and spatial scales, climatic conditions, land uses,
and land cover. The SOC models that are more frequently seen in the literature are
process-based, since they concentrate on the physical mechanisms that govern the
movement and changes of biological matter.

Process-based models are based on conceptual SOC pools that decay following
first order kinetics and consider biogeochemical processes that rely on
mathematical-ecological theory. They have the ability to simulate SOC turnover
and at some cases relate it to management practices. They are established at
various temporal and spatial scales based on scenarios that characterize intra and
inter-annual dynamics of SOC. Process-based models are multi-compartment
models i.e. they partition the total SOC mass into specific pools. Early modelling
approaches treated SOM as one homogeneous compartment, but with the
perpetual increase in computational power, multi-compartment models are
continuously being developed. Most of process-based SOM models currently found
in the literature are multi-compartment models (Table 4.2).

The position of each compartment in a model and its rate of decay define the
compartment's characteristics. Decay rates are usually expressed by first-order
kinetics with respect to the concentration (C) of the pool i.e. dC/dt = - kC, where t is
the time. The rate constant k of first-order kinetics is related to the time required to
reduce by half the concentration of the pool, without additional inputs. According
to first-order kinetics, decay rates are closely associated with the SOC stocks of the
several pools taken into account. Rate modifiers show that significant variables,
such as soil temperature, soil moisture content, and clay content, affect microbial
and physical processes. Two major categories of multi-compartment, process-
based models can be identified in the literature, based on the representation of
SOC decomposition kinetics:

1. Process-based models relying only on conceptual SOC pools, where SOC
decaying usually follows first order kinetics. The majority of models
appearing in Table 1, are first order models (e.g. Roth(C)
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2. Process-based models combining microbial and physical processes
controlling SOC decaying and stabilization by describing enzymatic
reactions, diffusion and/or sorption kinetics (non-linear). The models that
follow the non-linear SOC decay are marked with an asterisk in Table 1. In this
category, non-linear kinetics consider the feedback between microbial
activity and SOC substrates by representing the decay rate as a function of
SOC and/or microbial C stocks (Georgiou et al,, 2023; Wieder et al., 2013).
Literature review has revealed that up until 2000 the appearance of non-
linear kinetics in SOC modelling was limited. One possible explanation for
the recent rise in literature references of SOC models based on nonlinear
kinetics is that these models enable us to consider the transient dynamics
and feedback reactions of soil microorganisms to changing environments
and SOC decomposition. Even though linear models don't always accurately
depict these effects, their inherent stability and simplicity renders them as
the preferred choice. The necessity to account for nonlinear effects in the
context of climate change has increased the use of nonlinear models within
the past ten years. Therefore, nonlinear models are still predominantly
constructed exclusively for smaller scales, reflecting the geographical scales
at which the necessary data are available. Furthermore, local-scale rather
than global-scale data will be required for models to provide decision-
support to improve SOC sequestration at the plot or farm level.

4211 Rothamsted Carbon Model (RothC)

In the category of first-order models, the Rothamsted Carbon Model (RothC) model
is one of the most commonly used models in SOC modelling. RothC is a model of C
dynamics in non-water-logged soils, initially developed to model C turnover in
arable soils. It takes into consideration the effects of temperature, moisture content
and soil type, using a monthly step for calculations. SOC is divided into five
compartments or pools, depending on the rate of decomposition: inert organic
matter (IOM), easily decomposable plant material (DPM), resistant plant material
(RPM), microbial biomass (BIO) and humified organic matter (HUM). The IOM pool
resists decomposition and does not receive C inputs. All compartments except IOM
decompose following first-order processes. The model structure is displayed in
Figure 4.1.
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bIYE . Decomposable Plant Material
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68 : Microbial Biomass [s]Y : Inert Organic Matter

Figure 4.1. RothC model multi-department structure

Carbon from incoming plant inputs is split between DPM and RPM, depending on
the DPM/RPM (decomposability) ratio of the particular incoming plant material. For
most agricultural crops, a DPM/RPM ratio of 1.44 is used i.e.,, 59% of the plant
material is DPM and 41% is RPM. All incoming plant material enters these two
compartments only once. Both DPM and RPM decompose to form CO2, BIO and
HUM. The proportion that goes to CO2 and to BIO + HUM is determined by the clay
content of the soil. The BIO + HUM is then split into 46% BIO and 54% HUM. BIO and
HUM both decompose to form more CO2, BIO and HUM. Farmyard manure is
assumed to be more decomposed than normal crop plant material. It is split in the
following way: DPM 49%, RPM 49% and HUM 2%.

RothC has been applied across several ecosystems, climate conditions, and land
use (LU) classes using data from long-term experiments (Arnell et al., 2013; Liu et al,,
201). Farina et al. (2013) modified the soil water dynamics for semi-arid regions, and
Giongo et al. (2020) created a daily version and modified the soil water dynamics,
for Caatinga shrublands, in the semiarid region, North-East Brazil. The data
requirements for using RothC to generate simulations are listed in Table 4.1.

Table 4.1. RothC data requirements

Input Data / parameters
1 Monthly rainfall (mm).

2 Monthly open pan evaporation (mm). Monthly potential evapotranspiration can
be used divided by 0.75

3 Average monthly mean air temperature (°C).
4 Soil clay content (%).
5 Decomposability of the incoming plant material i.e. DPM/RPM ratio.
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6 Soil cover; specify the presence or absence of vegetation in the ground surface.

7 Monthly input of plant residues (t C ha™). Carbon that enters the soil per month (t
C ha"), including carbon released from roots during crop growth.

8 Monthly input of farmyard manure (FYM) (t C ha™), if any. FYM follows a different
treatment from inputs of fresh plant residues.

9 Depth of soil layer sampled (cm)

A wide range of soil and climate attributes for which data are lacking can be filled
in using predictive functions. PET can be estimated from simple models using
temperature alone, models based on solar radiation, or “combined” models
requiring an array of climate variables (Maas et al., 2023). Numerous environmental
variables, including air temperature and humidity, precipitation, wind speed, and
sun radiation, can be entered into PET computations.

Additionally, proxy data such as field coverage by vegetation, and biomass or yield
production, can be obtained by remote sensing (RS). This data can be used to
calculate the amount of C that a system's roots and surface litter add to the soil — a
critical component of RothC model. Despite their abundance, crop yield estimation
models often capture only a specific crop type and cannot easily provide temporal-
continuous information for the entire agricultural production (Neumann et al,,
2018). The total assimilated C via photosynthesis is the Gross Primary Production
(GPP). About half of GPP is soon released to the atmosphere via autotrophic
respiration. The remaining part, the Net Primary Production (NPP), is allocated into
compartments with a longer residence time such as leaves, roots or other
structures. An EO-data model using satellite remote sensing information and
capturing all land cover types worldwide is MODI17, which provides productivity
information since the year 2000 at 1-km resolution (Zhao and Running, 2010).

The wide acceptance and applicability of RothC as identified in the literature, is
mostly related to the simplicity of the models' conceptual design. In comparison,
CENTURY has a broader modelling scope than RothC, including C, N, phosphorus
and also sulfur dynamics. This results in a higher number of variables/parameters
required for model formulation. The lower number of required input data makes
RothC more easily applicable in the spatial context, with lower computational cost
than CENTURY or even more complex models. However, because RothC fails to
represent some biological processes, its simplicity comes with an associated cost.
The RothC model was tested against measurements from 16 long-term
experimental sites across global croplands more recently, using the model's
original default parameters. The results indicated that the model performed
generally well in representing the SOC dynamics under different conditions across
multiple sites. (Wang et al., 2016).
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Table 4.2. Multi-compartment, process-based SOC models (non-linear models
designated with asterisk)

1. AMG Saffinh-Hdadi, K. & Mary, B. Modeling consequences of straw residues
export on soil organic carbon. Soil Biol. Biochem. 40, 594-607 (2008).

2. ANIMO Rijtema, P.E.; Kroes, J.G. Some results of nitrogen simulations with the
model ANIMO. Fert. Res. 1991, 27, 189-198.

3. APSIM McCown, R.L; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P,;
Freebairn, D.M. APSIM: a novel software system for model
development, model testing and simulation in agricultural systems
research. Agr. Syst. 1996, 50, 255-271.

4, * Zelenev, V. V. van Bruggen, A. H. C,, Leffelaar, P. A, Bloem, J. &
BACWAVE Semenov, A. M. Oscillating dynamics of bacterial populations and their
-WEBS5 predators in response to fresh organic matter added to soil: The

simulation model ‘BACWAVE-WERB'. Soil Biol. Biochem. 38, 1690-1711
(2006).

5. Candy Franko, U. Modelling approaches soil organic matter turnover within
the CANDY system. In Evaluation of Soil Organic Matter Models Using
Existing, Long-Term Datasets; NATO ASI 138; Powlson, D.S., Smith, P.,
Smith, J.U., Eds.; Springer-Verlag: Berlin, 1996; 247-254.

6. CASA-CNP Jian, J. et al. Leveraging observed soil heterotrophic respiration fluxes
as a novel constraint on global-scale models. Glob. Change Biol. 27,
5392-5403 (2021).

7. CENTURY Parton, W.J,; Stewart, JW.B,; Cole, C.V. Dynamics of C, N, P,and S in
grassland soils: a model. Biogeochem- istry 1987, 5, 109-131.

8. CIPM Kuka, K, Franko, U. & RUhlmann, J. Modelling the impact of pore space
distribution on carbon turnover. Ecol. Model. 208, 295-306 (2007).

9. CN-SIM Petersen, B. M. et al. CN-SIM: a model for the turnover of soil organic
matter. Il. Short-term carbon and nitrogen development. Soil Biol.
Biochem. 37, 375-393 (2005).

10. * CORPSE Jian, J. et al. Leveraging observed soil heterotrophic respiration fluxes
as a novel constraint on global-scale models. Glob. Change Biol. 27,
5392-5403 (2021).

1. DAISY Laub, M. et al. DRIFTS band areas as measured pool size proxy to
reduce parameter uncertainty in soil organic matter models.
Biogeosciences 17, 1393-1413 (2020).

12. DNDC Li, C,; Frolking, S.; Harriss, R. Modelling carbon biogeochemistry in
agricultural soils. Global Biogeochem. Cycles 1994, 8, 237-254.

13. DSSAT Cycles 1994, 8, 237-254. Hoogenboom, C.; Jones, JW.; Hunt, LA,
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Crop Model Applications, Paper 94-3025, ASAE Meeting, Missouri, June
1994, 23 pp.
14. D3R Douglas, C.L,, Jr.; Rickman, R.W. Estimating crop residue
decomposition from air temperature, initial nitrogen content, and
residue placement. Soil Sci. Soc. Am. J. 1992, 56, 272-278.
15. * Ecosys Grant, R. Modeling transformations of soil organic carbon and nitrogen
at differing scales of complexity. Modeling carbon and nitrogen
dynamics for soil management (2001).
16. EPIC Williams, J.R. The erosion-productivity impact calculator (EPIC) model:
a case history. Phil. Trans. Roy. Soc. Lond. B1990, 329, 421-428.
17. FERT Lond. B 1990, 329, 421-428. Kan, N.A.; Kan, E.E. Simulation model of soil
fertility. Physiol. Biochem. Cultivated Plants 1991, 23, 3-16.
18. ForClim-D  Perruchoud, D.O. Modeling the Dynamic of Non-living Organic Carbon
in a Changing Climate: A Case Study for Temperate Forests. Ph.D.,,
Thesis, ETH Diss. No. 11900, 1996; 196 pp.
19. GENDEC Moorhead, D.L.; Reynolds, J.F. A general model of litter decomposition
in the northern Chihuahuan desert. Ecol. Model. 1991, 56, 197-219.
20 HPM/EFM  Thornley, J.H.M,; Verberne, E.L.J. A model of nitrogen flows in grassland.
Plant Cell Environ. 1989, 12, 863-886.
21. ICBM Andrén, O, Katterer, T. ICBM—the introductory carbon balance model
for exploration of soil carbon balances. Ecol. Appl. 1997, 7, 1226-1236.
22 KLIMAT- Sirotenko, O.D. The USSR climate-soil-yield simulation system.
SOIL- Meteorologia i Gidrologia 1991, 4, 67-73.
YIELD
23 LPJ Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and
terrestrial carbon cycling in the LPJ dynamic global vegetation model:
LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161-185
(2003).
24 Humus Schevtsova, L.K.; Mikhailov, B.G. Control of Soil Humus Balance Based
balance on Statistical Analysis of Long-Term Field Experiments Database; VIUA:
Moscow, 1992, (in Russian).
25 * MIMICS Wieder, W. R. et al. Explicitly representing soil microbial processes in
Earth system models: Soil microbes in earth system models. Glob.
Biogeochem. Cycles 29, 1782-1800 (2015).
26 MOMOS Pansu, M., Bottner, P., Sarmiento, L. & Metselaar, K. Comparison of five

soil organic matter decomposition models using data from a 14 C and
15 N labeling field experiment: Comparison of five soil organic matter
models. Glob. Biogeochem. Cycles 18, n/fa-n/a (2004).
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27 MOTOR Whitmore, A.P.; Klein-Gunnewiek, H.; Crocker, G.J.; Klir, J.; Kbrschens, M.;
Poulton, P.R. Simulating trends in soil organic carbon in long-term
experiments using the Verberne=MOTOR model. Geoderma 1997, 81,
137-151.
28 N14CP- 16, Janes-Bassett, V., Davies, J., Rowe, E. C. & Tipping, E. Simulating
Agri long-term carbon nitrogen and phosphorus biogeochemical cycling in
agricultural environments. Sci. Total Environ. 714, 136599 (2020).
29 NAM SOM Ryzhova, |.M. Analysis of sensitivity of soil-vegetation systems to
variations in carbon turnover parameters based on a mathematical
model. Eurasian Soil Sci1993, 25, 43-50.
30 NCSOIL Molina, J.A.E.; Hadas, A,; Clapp, C.E. Computer simulation of nitrogen
turnover in soil and priming effect.
Soil Biol. Biochem. 1990, 22, 349-353.
31. NICCE Van Dam, D.; Van Breemen, N. NICCE—a model for cycling of nitrogen
and carbon isotopes in coniferous forest ecosystems. Ecol. Model. 1995,
79, 255-275.
32 O'Brien O'Brien, B.J. Soil organic carbon fluxes and turnover rates estimated
model from radiocarbon measurements. Soil Biol. Biochem. 1984, 16, 115-120.
33 Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob.
ORCHIDEE Change Biol. 24,1873-1883 (2018).
-PRIM
34 Q-soil Bosatta, E.; ,&gren, G.l. Theoretical analyses of the interactions between
inorganic nitrogen and soil organic matter. Eur. J. Soil Sci. 1995, 76, 109-
4.
35 PRIM Guenet, B, Moyano, F. E., Peylin, P,, Ciais, P. & Janssens, |. A. Towards a
representation of priming on soil carbon decomposition in the global
land biosphere model ORCHIDEE (version 1.9.5.2). Geosci. Model Dev. 9,
841-855 (2016).
36 RothC Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klir, J.; Kérschens,
M.; Poulton, P.R;; Richter, D.D. Simulating trends in soil organic carbon
in long-term experiments using RothC-23.6. Geoderma 1997, 81, 29-44.
37 SOCRATES Grace, P.R,; Ladd, J.N. SOCRATES v2.00 User Manual; Co-operative
Research Centre for Soil and Land Management: Glen Osmond, South
Australia, 1995.
38 *SOMKO  Gignouy, J. et al. Design and test of a generic cohort model of soil
organic matter decomposition: the SOMKO model: SOMKO: a generic
decomposition model. Glob. Ecol. Biogeogr. 10, 639-660 (2001).
39 SOMM Chertov, O.G.; Komarov, A.S. SOMM—a model of soil organic matter and

nitrogen dynamics in terrestrial ecosystems. In Evaluation of Soil
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Organic Matter Models Using Existing, Long-Term Datasets; Powlson,
D.S., Smith, P, Smith, J.U., Eds.; NATO ASI I38; Springer- Verlag: Berlin,
1996; 231-236.

4Q Sundial Smith, J.U,; Bradbury, M.J.; Addiscott, T.M. SUNDIAL: simulation of
nitrogen dynamics in arable land. A user-friendly, PC-based version of
the Rothamsted nitrogen turnover model. Agron. J. 1996, 88, 38-43.

41 Verberne Verberne, E.L.J,; Hassink, J.; de Willigen, P.; Groot, J.R.R,; van Veen, J A.
Modelling soil organic matter dynamics in different soils. Neth. J. Agric.
Sci. 1990, 38, 221-238.

42 Yasso 24, Mao, Z. et al. Modeling soil organic carbon dynamics in temperate
forests with YassoO7. Biogeosciences 16, 1955-1973 (2019).

4211 Process-based models’ validation

Process-based models, particularly those that incorporate both physical and
microbiological processes, tend to become more complex and incorporate an
increasing number of bio-geochemical processes. However, including more
processes or compartments in SOC models, over-fitting of the model parameters
becomes possible and may lead to undesirable biases. Despite the numerous
model applications found in literature, there seems to be no consensus on any
approach for understanding and predicting SOC dynamics. As a consequence of
the wide range of approaches, large disparities in predicted SOC values are
observed among models, regardless of model category or temporal and spatial
scales, suggesting the need for more thorough SOC model validation processes.
The lack of standardization in the model validation criteria, further complicates the
comparison of model performance.

Validation of models is a critical step to improve confidence in SOC model
predictions. In a comprehensive evaluation of SOM models, Izaurralde et al., 2001
tested nine models against data sets from seven long-term experiments and the
results showed that specific models — including RothC - had significantly lower
overall errors [root mean square error (RMSE)], than other models. Wang et al. (2016)
used data from 16 long-term experimental sites spread around the wheat-growing
regions of the world to assess the model's efficiency in simulating fluctuations in
soil C. According to the verified results, the model could fairly replicate the
dynamics of soil organic matter across a broad spectrum of climatic and soil
conditions as well as agricultural management practices.

Typically, the more data that is gathered regarding SOC stocks and SOC
compartments, bulk density in vertical SOC profile, moisture content, clay content,
C inputs from plants, microbial biomass, etc., the more reliable the model outputs
will be. Long-term field experiments, in particular, offer insightful empirical insights
for assessing SOC models. The decadal field experiments, which are now in place
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and offer long-term time-series data on SOC stocks under various climatic
circumstances, constitute a useful source of data given the time and resources
needed to build high value long-term data sets and monitoring networks.

The diversity in SOC modelling approaches can be helpful in improving the
prediction ability for SOC stocks. Model diversity is a fundamental characteristic in
the case of multi-model ensemble approaches (Riggers et al, 2019; Farina et al,
2021). Implementing weighted averages and selecting models based on
performance criteria can decrease prediction error and enhance the reliability of
predictions, compared to simulations using a single model. Still, in Multi-model
ensemble approaches, standardizing approaches to modeling is a crucial problem;
model inter-comparisons are challenging due to the selection of calibrating
parameters, initialization strategies for different soil compartments, and forcing
variable estimation. Nevertheless, multi-model ensembles appear promising,
offering higher reliability than single models.

Despite the continuous development of process-based models, upscaling the
results from such models is constrained by several factors, mainly because of the
lack of spatial data at the required spatiotemporal resolution, particularly on soil
properties. Alternatively, the digital soil mapping framework of the SCORPAN
regression kriging approach has been used to model the spatial and temporal
distribution of soil carbon at larger scales (Stockmann et al., 2015). Using this
approach, a collection of global environmental covariates is assembled, selected to
reflect a variety of soil-forming factors and soil-change drivers, including digital
elevation models and their derivatives, climate data (long-term precipitation and
temperature data), land-cover data and EO-data based biophysical indicators. Such
environmental covariates or predictors, available over areas of interest can be used
to generate spatial predictions of soil carbon, by modelling the relationship
between target and auxiliary environmental variables. In a parallel manner, the
research in digital soil mapping based on various machine and deep learning
methods is ongoing. (Radocaj et al., 2024) Decision trees, such as Random Forest
(RF), Gradient Boosting Machines (GBM), Cubist, and Quantile Random Forest
(QRF), are the most prevalent machine learning methods used for total soil carbon
prediction. Random Forest (RF) and Gradient Boosting Machines (GBM) are often
used to construct ensemble decision trees. They combine several weak learners to
generate a strong learner, which is a key component of the supervised learning
strategy. (Radocaj et al., 2024).

In statistical, data-driven spatio-temporal carbon modelling the crucial data
besides the available spatial covariates are point observations — preferably repeated
- with standardized measurements of SOC concentrations or stocks. De Rosa et al,,
2024 employed a data-driven spatial SOC changes modelling approach, utilizing
SOC temporal change data obtained from the Land-Use/Land-Cover Area Frame-
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Survey (LUCAS) conducted across EU member states in 2009, 2015 and 2018. This
novel approach provided for the first time an estimate of SOC changes at the
European Level, using quantile generalized additive modelling (qGAM) and LUCAS
revisited points. gGAMs are non-parametric regression models that demonstrate
the capacity to capture the non-linear correlation between the response and
explanatory variables using smooth effects. No previous hypotheses regarding the
conditional distribution of the conditional response variable are necessary. This
enhances the robustness of gGAMs when the variance of the response variable
varies in relation to the explanatory variables.

The RothC carbon model was used to spatio-temporally simulate the soil C
dynamics in croplands, for a time span of 10 years, during 2009-2018. The study area
is in northern Greece, covering 140K ha of agricultural land with wheat, barley,
maize and several other crops. The masking of the agricultural land cover was
based on Copernicus Land Monitoring Service (ver.3). Land Cover Change Version
3.0 product at 100 m resolution (Figure 4.2).

The RothC model has been frequently and extensively implemented to simulate
changes in soil carbon under a variety of soil-climate conditions and management
practices in agricultural systems worldwide. These assessments typically rely on the
consideration of relatively large areas as homogeneous in terms of the response of
soils to land use change or to variation in climatic variables like temperature and
precipitation. In the current approach, RothC application is spatially explicit, i.e. cell -
based to take advantage of EO-data and their spatial and temporal variability to
spatio-temporally simulate the Soil-C dynamics in croplands. EO-data were
assessed through GEE platform, and spatial modelling and processing was
implemented in R computational environment. RothC modelling was
implemented with a differential equations approach, using the package SoilR
(Sierra et al., 2012).
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Land Cover 2018 ™ Non-irrigated arable land I Fruit trees and berry plantations
B Permanently irrigated land Olive groves
0 Rice fields B Annual crops associated with permanent crops 0 10km
2 Vineyards I Complex cultivation patterns

Figure 4.2. Agricultural LC mask

The application of RothC model was based on geographical data, mainly from
public-access geospatial information concerning land cover, soil, climate, and
productivity from both online and local sources:

4311 Land Cover data

Copernicus Land Monitoring Service (ver.3). Land Cover Change Version 3.0 product
at 100 m resolution. The Copernicus Global Land Service (CGLS) generates a series
of qualified bio-geophysical products regularly, at global scales with medium to low
spatial resolution (https://land.copernicus.eu/global/products/Ic). Land cover from
CGLS was used for the purpose of masking the area of interest to the agricultural
land cover class.

4312 Soil data

The Regional Soil Mapping survey, carried out during 2008-2009 was the source of
available soil data, including 362 soil profiles with analytical data in several layers up
to Im (Figure 4.3).

~ v

/M * Soil profiles (Soil Mapping survey 2009) [362] g b
Figure 4.3. Soil profiles from 2008-2009 Regional Soil Mapping survey
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Spatial predictions from geostatistical models, build from the top layers of the
distribution of soil profiles, concerning Soil bulk density, Clay Soil fraction and Initial
Carbon concentration, were generated with a spatial resolution of 250m. The
resulting distributions are displayed in Figure 4.4 and Table 4.3. RothC simulates
carbon dynamics in terms of carbon density (ton C ha”') which is referred commmonly
as carbon stock per area unit. Initial soil carbon concentrations SOC (%) are
transformed into stocks SCD (t ha™) using the formula

SCD = SOC *BD *d * (1-(frag/100))

Where BD = bulk density (g/cm?), d = soil depth (cm), frag = vol. of coarse
fragments %

Table 4.3. Input data statistics

AOIL: input statistics (n=22550)

Variable units Min. 1st Qu. Median Mean 3rd Qu. Max. sd cVv

Soil bulk density g/lcm® 1028 2474 27.94 28.36 31.78 51.63 5';6 18.93

Clay Soil fraction % 22.45 29.61 31.07 3115 327 4123 2351 7.547

Initial Carbon Stock  t/ha 2437 2654 27.85 281 29.76 34 1829 6509

density

2% 30 35 4 12 15 18

o - . 40 50
Initial Carbon Stock (t ha %) Bulk density (g cm *)

20 i
Clay Seil fraction (%)

Figure 4.4. Input data distributions
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4313 Climate data

Climate Data Store - European Centre for Medium-Range Weather Forecasts
(ECMWEF) produces global data regarding the land component of the European
Re-Analysis (ERAS), referred to as ERA5-Land (https://developers.google.com/earth-
engine/datasets/catalog/ECMWEF_ERAS.). Climatic data concerning temperature,
precipitation, and evapotranspiration as monthly averages, were accessed in the
form of time-series averages for the time period of 2009-2018. The resulting
distributions are displayed in Figure 4.5.
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Figure 4.5. Climate data monthly distributions
4.3.1.1 Productivity data

Carbon inputs originate from crop residues, roots and manure (Wang et al.,, 2017).
The latter is expressed in RothC as separate input (FYM) from residues and roots,
and in absence of any relevant information is considered as zero input, allowing the
use of EO-based productivity data for the estimation of C-input on a monthly basis.

MODIS data allows estimation of plant productivity using the MODI17 algorithm
(Zhao and Running, 2010), which uses biogeochemical principles on daily climate
input, providing annual NPP and GPP (Net and Gross Primary Production). The
yearly product at 500m resolution (https:/developers.google.com/earth-
engine/datasets/catalog/MODIS 061 MODI17A3HGF) (Running S., Zhao M. 2021) was
extracted for the decade of interest (2009-2018), resulting in the distribution
displayed in Figure 4.6. NPP comprises all C allocated into plant compartments
(above- or belowground, stem or leaves). Following the approach by Neumann M,,
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2018, we considered three proportions of NPP: roots 22%, aboveground residues
40% and harvested material 38%.

MODIS Terra NPP
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C (tha® year®)
o

~
f

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
year

Figure 4.6. MODIS NPP distributions (2009-2018)

4.3.1.2 Model initialization

RothC model uses five conceptual pools (Figure 1) for SOC modelling, including two
litter-driven compartments (decomposable plant material, DPM, and resistant
plant material, RPM) and three more pools, namely microbial biomass (BIO),
humified organic matter (HUM) and inert organic matter (IOM). These carbon pools
must be explicitly defined during model initialization, since they are purely
conceptual, regardless the fact that they are difficult to quantify on regional to
continental scales. As a solution the model could be run into equilibrium mode,
matching a given SOC content, which is a time consuming and complex process,
requiring additional data, such as historical climate data and uncertain information
about the carbon input from plant residues and/or manure application.
Weihermulleret al., 2013, developed pedotransfer functions (PTFs) based on soil
organic carbon (SOC) and clay content data to predict all active carbon pools of the
RothC model.

RPM = (0.1847- SOC + 0.1555) - (clay + 1.2750) -0.1158,

HUM = (0.7148- SOC + 0.5069) - (clay + 0.3421) 0.0184,
BIO = (0.0140- SOC + 0.0075) - (clay + 8.8473) 0.0567,
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where SOC is expressed in t ha™ and clay in % mass. Additionally, IOM that
represents a small, stable, and biologically-inert fraction of soil carbon, was
estimated by PTFs developed from long-term experiments by Falloon et al., 1998.
The DPM fraction is subsequently estimated using the Falloon method

IOM = 0.049 - SOCI.139,
DPM =50C - IOM - RPM - HUM - BIO

4311 Results

RothC simulation results reveal a general SOC increase over time in the study area
with a mean value of 37 t C ha’. Statistics for the resulting distribution are
presented in Table 4.4. RothC simulation statistics. The final simulation result for
the end of the time period of 2009-2018 is displayed in Figure 4.7. The quantified
SOC stock changes also showed large spatial disparities across the study area, with
the smallest increase and minor decrease appearing in specific regions in the
eastern part of the area. These spatial patterns are directly related to the spatial
heterogeneity of the NPP input data, that is characteristic and consistent
throughout the entire decade 2009-2018 (Figure 4.8).

Figure 4.7. RothC simulation of C-dynamics (2018)
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Table 4.4. RothC simulation statistics

AOI: RothC statistics (n=22550) - 2018 simulation

I1st Qu. Median Mean 3rd Qu.

variable units Min.

Max.

37142 4.4397

-1.1560 29487 3.658

ASOC tha’'

11.0913

MODIS Terra Net Primary Production
NPP year: 2009

MODIS Terra Net Primary Production
NPP year: 2018

Figure 4.8. MODIS Terra NPP: 2009 (top), 2018 (bottom)
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The temporal changes in SOC stocks are depicted in Figure 4.9, where the
simulated distribution at the end of each year of the decade is displayed. The
average annual SOC change during the decade was 0.343t C ha'year'with arange
0.11-0.6 and the smallest change occurring during 2011-2012, coinciding with the

decade minimum of NPP distributions.
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Figure 4.9. Soil Carbon stock temporal change

The quantified SOC stock changes were almost at an equal amount, positively
correlated with Clay and negative correlated with initial carbon stock (SCD). The
initial stock is one of the major controlling factors of SOC change. The results in
Figure 4.10 suggest that soils with lower initial SOC concentrations might see larger
SOC increase or lower soil C losses under otherwise comparable environmental and
management conditions. Other researchers have similarly reported this inverse
relationship between SOC change and initial SOC content (Wang et al, 2017,
Tadiello et al., 2023).
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This negative relationship is further supported by the distribution of spatial
patterns in the Initial SCD across the study area (Figure 4.11); soils with higher initial

carbon stocks exhibit the lowest increase in  ASOC (Figure 4.6).

Figure 4.11. Initial carbon stock

SCD (2009)

(Vha)

8

Several authors have reported the positive effect of the clay percentage on SOC
adsorption (Wang et al,, 2017; Tadiello et al., 2023). This is related to the fact that clay
soils exhibit strong aggregate formation and stability that prevents SOM
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decomposition. The optimum balance of soil organic carbon (SOC) and clay must
be meticulously determined to achieve its beneficial effect on SOC sequestration.
Tadiello et al., (2023) reported a maximum SOC/clay index threshold of 3.2 for
positive effect on sequestration. Although in our case the SOC/clay index seems in
the optimal region (Figure 4.13), if soils with higher initial SOC contents also have
higher clay fractions, this would overshadow the beneficial contributions of soil clay
to soil C accumulation. This result is supported by the distribution of SCD:Clay ratio
in Figure 4.9, which is very close to 1.

A statistical modelling approach was adopted, similar to De Rosa et al, (2024), in
order to assess the change in SOC stocks in the same study area of northern Greece
during the period 2009-2018. The initial model formulation focused on 10-year
changes in SOC concentrations (ASOC), assessed by fitting a quantile generalized
additive model (qGAM) (Fasiolo et al., 2021) using the mgcViz R package (Fasiolo et
al,, 2020) on the revisited points of LUCAS topsoil (0—20cm) surveys of 2009 and
2018. The trained model was then used for spatial predictions of ASOC. The
response variable is the difference between SOC content from 2018 and 2009
revisited LUCAS points. To exclude land use change as a driving force of SOC
changes, we focused only on the LUCAS points that remained in agricultural land
use and land cover during 2009-2018. The distributions of interest from the selected
LUCAS points are displayed in and Figure 4.12.
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Figure 4.12. Revisited LUCAS points (2009-2018)
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Table 4.5. LUCAS data statistics

AOL: input LUCAS statistics (n=102)

variable units Min. 1st Qu. Median Mean 3rdQu. Max. sd cv
ASOC g kg” -N.2 -1.075 0.6 0.9265 3.075 12.6 4116 4443
SOC g kg 3.4 8.6 11.35 13.65 16.08 527 8.023 58.8
Clay Soil % 4 18 24 26.89 38 54 1231 4579
fraction
0.03-
QU.UZ’
N 0.01-
0.00-
0 25 50
Clay Soil fraction (%)
0.06 -
0.10~- a
= B 0.04-
- 0.02-
000 , \ 0.00-
e E(Usoc) ° i) 20 40 60
{tha) SOC 2009 (g kg™)
Figure 4.13. LUCAS data distributions
4.3.2.1 Predictors

The WorldClim Bioclimatic variables (Hijmans et al., 2005) concerning temperature
and precipitation were used as predictors in the modelling process, along with the
clay content and the initial SOC content (2009), log-transformed due to skewed
distribution (Figure 4.13). To produce data that is more biologically significant, the
bioclimatic variables are used to represent seasonality (e.g., the annual range in
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temperature and precipitation) and annual trends (e.g, the mean annual
temperature).

The annual long-term mean precipitation (ann_P, mm) with precipitation
seasonality (coefficient of variation, precCV), and the annual long-term
temperature (mean annual temperature ann_T, °C) with temperature seasonality
(standard deviation, tempSD), were extracted and included in the process
(https://developers.google.com/earth-engine/datasets/catalog/WORLDCLIM). The
final model included smooth effects from each of the two soil variables (log(SOC),
Clay), and each of the four Bioclimatic variables, along with smooth nonlinear
interactions of the soil variables, the temperature variables, and the precipitation
variables, separately. Assessment of model performance was carried out using
10fold cross-validation. Visual inspection of partial dependence (PD) plots was
employed to evaluate the contribution of each variable included in the model's
predictions. PD plots depict the effect of a single predictor variable on the predicted
outcome, with all other variables held constant. For spatial prediction the trained
model was used to generate ASOC predictions across the study area using spatially
explicit covariates at a resolution of 250m. The initial SOC in 2009 and soil clay
content were adopted from the RothC modelling approach, while the Bioclimatic
variables were downscaled from native = Tkm to 250m (bilinear interpolation). The
distributions of the Bioclimatic predictors are presented in Table 4.6.

Table 4.6. WorldClim data statistics

AOIl: input WClim statistics (n=22550)

Ist Median Mean 3rd Max. sd cv

Qu. Qu.

BioClim variable unit Min.

Annual Precipitation mm 7281 7849 830.3 8221 8558 9499 4354 5296

Precipitation

. % 5401 6526 68.29 67.62 70.61 731 3629 5367
seasonality (CV)

Annual Temperature °C 10.4 16.62 17.26 16.9 17.73 181 1137 6.725

Temperature

. °C 5353 5775 5996 5.91 6.038 6328 0.1848 3127
seasonality (SD)

4322 Results

The revisited LUCAS points (Figure) showed ASOC to be extremely variable, ranging
from -11to 12 g C kg™, with a median of 0.6 g C kg™ for the whole decade 2009-2018.
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The gGAM prediction was fairly accurate as depicted in the console output with the
modeling summary results:

summary (gfit)

Family: elf

Link function: identity

Formula:

DeltasSOC ~ s(log(sOC), k = 20) + s(Clay, k = 20) + s(ann_P) + s(precCV) +
s(ann_T) + s(tempSD) + ti(log(SOC), Clay) +

ti(ann P, precCV) + ti(ann T, tempSD)

Parametric coefficients:
Estimate Std. Error z value Pr(>]|z])
(Intercept) 2.646 1.274 2.077 0.0378 *
Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*/ 0.05 ‘. 0.1 Y " 1
Approximate significance of smooth terms:

edf Ref.df Chi.sg p-value

s (log (SOC) ) 16.129 17.194 195.286 < 2e-16 ***
s (Clay) 12.954 14.703 100.359 < 2e-16 ***
s (ann_P) 5.885 6.643 35.515 3.37e-06 ***
s (precCV) 8.370 8.640 128.671 < 2e-16 ***
s (ann_T) 3.070 3.618 24.861 4.73e-05 **x*
s (tempSD) 5.313 6.150 49.923 < 2e-16 **%*

ti(log(SOC),Clay) 11.707 12.476 74.716 < 2e-16 **x*
ti(ann_P,precCV) 4.190 5.062 25.867 7.71e-05 ***

ti(ann_ T, tempSD) 5.645 6.573 4.001 0.583

Signif. codes: 0 ‘***x’ (0.001 ‘**’ (0.01 ‘*’ 0.05 ‘. 0.1 Y ' 1
R-sqg. (adj) = 0.722 Deviance explained = 90.5%

-REML = 328.91 Scale est. =1 n = 102

The model explained 90% of the initial variability in the LUCAS data (ASOC). All the
involved smoothing terms proved significant, with the exception of the smooth
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non-linear interaction between the temperature and its seasonality. The cross-
validation error was also computed in t ha™

# 10fold cross-validation
mean (cv.MSESMSE) %>%
sqgrt ()

[1] 1.12725

Each of the involved modelling terms (smoothing effects) is displayed in Figure 4.14.
The investigation of PD plot (Figure bottom) revealed the interactions between the
modeled variables. Lower initial SOC content combined with low clay levels had an
overall positive influence on ASOC, while increasing initial SOC content had a
negative effect on ASOC, regardless of clay content. Additionally, high annual mean
precipitation at low-to-medium levels of inter-annual variability had a positive
effect on ASOC. In contrast, warm and semi-arid climatic conditions (i.e.
Mediterranean climate) promoted SOC losses.
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Figure 4.14. Main effect modelling terms (smooths) and non-linear interactions

4323 Spatial prediction

Spatial prediction from the gGAM model was carried out in the study area, for the
median quantile (q=0.5). The results are displayed in Figure 4.15.
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Figure 4.15. gGAM spatial prediction

Table 4.7. qCAM prediction statistics

AOI: qGAM statistics (n=22550)

variable units Min. 1st Qu. Median Mean 3rd Qu. Max.

ASOC tha' -11.633 -1.607 1.772 1.980 5.802 11.920

The soil bulk density, which was employed to convert SOC concentration to stocks,
was estimated using an empirically developed pedotransfer function, adopted
from Hollis et al. (2012). The gGAM spatial prediction results reveal a general SOC
increase in the study area during the decade 2009-2018, with a mean value of 1.98 t
ha'. Statistics for the resulting distribution are presented in Table 4.7. The
guantified SOC stock changes (Figure 4.15) also showed large spatial disparities
across the study area, with the largest decrease appearing in a specific region in
the western part of the area. These spatial patterns are controlled by the input
LUCAS revisited dataset, whose input data on ASOC exhibits extreme variability ().

Although the two presented modelling approaches are fundamentally different,
they are comparable since they both output soil carbon dynamics for the same
time period and in the same units (t ha”). Judging by the statistically described
distributions of both modelling results in Table 4.8, there is higher degree of
agreement in the upper tails, i.e,, the maximum values of C-dynamics, indicating
that the resulting maximum level of predicted carbon stocks is realistic enough
with respect to the input LUCAS point observations. The distribution across the
study area is significantly different between the two modelling results, especially
towards the lower end, where the gGAM model trained with LUCAS data, exhibits
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substantial stock losses locally in areas where the RothC model simulates steadily
increasing carbon stocks. This result can be attributed to the inherent limitations
of the RothC model; the possible leaching of organic matter is not considered, and
the model lacks a management practices module, which is a feature of other
models that can simulate the effects of fertilization, harvesting, irrigation, and
erosion. Additionally, RothC does not consider additional water input types other
than precipitation (i.e. water from irrigation). Water management during dry
seasons can significantly impact SOC mineralization. The absence of these
processes in the modeling framework is the current limitation of RothC and is the
subject of several improvement efforts found in the literature (Farina et al., 2013;
Hyun et al., 2024).

Table 4.8. Summarized modelling results

AOI: RothC - 2018 simulation and qGAM statistics (n=22550)

model units Min. 1st Qu. Median Mean 3rd Qu. Max.
ASOC RothC t ha’ -1.1560 2.9487 3.658 37142 4.4397 11.0913
ASOC qGAM t ha’ -11.633 -1.e07 1.772 1.980 5.802 11.920
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Assessment of soil quality according to observations-based inventory requires the
selection of the appropriate indicators from existing soil databases. In most cases,
the number of soil quality indicators that are assessed on a particular set of soil
samples needs to be limited to a minimum dataset. (Bunemann et al., 2018). Initially,
the selection of minimum datasets was determined by expert judgment.
Multivariate strategies for statistical data reduction like principal component
analysis (PCA), became increasingly used later on. Given the limitations of finances,
time, and various other constraints, choosing a minimal dataset derived from a
wider range of soil quality indicators is an essential step in soil quality assessments
to prevent collinearity. Currently, EU-scale soil quality related databases, with
publicly available data from in situ observations, include the following major
sources:

The soil assessment component of the periodic LUCAS Land Use/Land Cover Area
Frame Survey was initiated in 2009 from the EU Commission (Toth G, Jones A,
Montanarella L. 2013). In 25 Member States (excluding Bulgaria, Malta, Romania,
and Cyprus), composite soil samples were collected and analyzed based on the
physical and chemical properties of the topsoil at a depth of 0-20 cm. The scope of
the LUCAS Soil Component was to establish a harmonized dataset of the main
topsoil properties in the EU. In total, approximately 22,000 soil samples were
analyzed for cation exchange capacity, percentage of coarse fragments, pH,
carbonates, organic carbon, total nitrogen, phosphorous, extractable potassium,
particle-size distribution, spectral properties and heavy metals. During 2015,
repetitive soil sampling was carried out in the initial point locations of LUCAS
2009/2012 to monitor the ongoing changes in physical and chemical topsoil
parameters across the EU. Additionally, soil samples were collected in Bosnia-
Herzegovina, Albania, Croatia, Montenegro, North-Macedonia, Serbia and
Switzerland. Throughout 2016 and 2017, more than 27.000 soil samples were
collected, analyzed and added to the collection. Within the LUCAS framework a
new soil sampling campaign was carried out in 2018, with soil samples collected in
repeated points of LUCAS 2009, 2012 and 2015 (Orgiazzi et al,, 2018). Several new
physical, chemical, and biological characteristics were investigated, including
important indicators for assessing the quality of the soil, such as the bulk density
and the biodiversity of the soil.

Due to the wide variety of soil properties considered, LUCAS Soil is one of the
biggest and most complete, harmonized continental-scale soil databases in the
world. Furthermore, it was designed as a scalable resource, allowing for the
addition of new features and sample sites during subsequent sampling cycles.
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Accessible to the scientific community and decision makers, data plays a crucial
role in facilitating research and shaping the land-focused policy agenda. Moreover,
the European Soil Data Centre (ESDAC) provides openly accessible data via this
open-access service. (Panagos et al,, 2012).

The World Soil Information Service (WoSIS) provides standardized soil profile data
to enable large-scale environmental applications and digital soil mapping. From
the release of the first “WoSIS snapshot”, in July 2016, many new soil data were
included, registered in the ISRIC data repository and subsequently standardized in
compliance with the requirements of the data providers. Soil profile data managed
in WoSIS were provided by numerous different data sources; consequently,
particular focus was placed on measures for soil data quality and the
standardization of soil property definitions, soil property values (and units of
measurement) and soil analytical method descriptions. Several soil chemical and
physical properties were taken into consideration. Additionally, for each soil profile
the soil classification was also provided (FAO, WRB, USDA). Geographical data
accuracy, along with the uncertainty of the analytical methods, are also available
for further modelling assessments. The latest set of quality-assessed and
standardized data is called “wosis_latest” and is accessible through OGC-compliant
WES services. The available snapshot (September 2019) includes 196498 geo-
referenced profiles originating from 173 countries. They describe more than 832000
soil horizons and 5.8 million records, under the framework of the Global Soil
Information System (GloSIS) developed by the Global Soil Partnership (GSP). The
current “WoSIS snapshot — September 2019" is available through public access at
https://doi.org/1017027/isric-wdcsoils.20190901 (Batjes et al., 2020).

In Euro-MED area, many national approaches for the assessment of soil quality have
been developed, relying entirely on the national-level soil mapping surveys that
each country has carried out, collecting soil related information from in-situ
observations. Each national repository has unique characteristics regarding
sampling regime, analysis, metadata, soil depth profile, and there can be significant
discrepancies between soil data across different databases, including
methodology, purpose, and sampling strategies (spatial distribution & soil depth).
A common bias in soil organic carbon measurements in many surveys is the
overestimation of soil bulk density. Dry bulk density measurements are used for
SOC density estimation from SOC concentration, but the main limitation of this
approach at national scales is an over-estimation in bulk density measurements,
due to up-scaling issues. Despite the lack of harmonization between national soil
databases, they are recorded in Table 1to assist future harmonization efforts similar
to those from Uhran et al., 2021.

Table 5.1. National/Regional level Soil-quality related databases
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EU_MED In-situ Analytical data
Country/level observations
1. Greece/nationaland Augers, soil Basic physical/chemical in augers with
regional level profiles BD and fragments vol. additional in
soil profiles
2 North Macedonia/ Augers, soil Basic physical/chemical parameters
national and regional profiles

level

3  Slovenia/national
regional level

(currently available)

Soil profiles

Basic physical and chemical properties
of soil profiles (pH, texture, Soil organic
carbon, SOM, total N, C/N,
exchangeable phosphorus and
potassium, exchangeable cations.)

4 Slovenia/national and
regional level

(in preparation larger
soil database by KIS
and also Ministry of
Agriculture, Forestry
and Food)

Soil profiles

Soil layers

Basic physical and chemical properties
of soil (pH, plant available phosphorus
and potassium, total N, SOM, texture,
cation exchange capacity, heavy
metals, mineral oils, bulk density,...)
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The agricultural yields of primary crops (wheat, rice, maize, and soybean) have risen
significantly during the past decades, driven by escalating global food and feed
demands and facilitated by technological advancements. Agriculture is essential
for global food security, but conventional agricultural practices, marked by
intensive monoculture, significant dependence on synthetic inputs, and extensive
soil tillage, have led to various environmental issues, including soil degradation,
biodiversity loss, and heightened greenhouse gas emissions. In recent years,
sustainable agriculture practices have emerged as a viable alternative to traditional
methods, prioritizing measures that improve environmental quality, conserve
natural resources, and provide economic sustainability for farmers (FAO 2020).

The significant potential of carbon sequestration in crops offers a feasible strategy
for lowering atmospheric CO2 levels to mitigate climate change (Lal et al, 2016).
This technique relies on cropping systems, which can be characterized as a
frammework for growers to follow in their crop production practices. An optimal
farming system for carbon sequestration should generate and sustain a substantial
guantity of biomass or organic carbon in the soil. Soil carbon sequestration is
important for mitigating the effects of climate change and enhancing food
security.

Climate change related issues like rising temperatures and increasingly frequent
extreme weather events provide significant risks to crop yields and global food
security. The rise in atmospheric CO; levels and anticipated climate change may
affect global agriculture by altering plant growth and development, respiration,
transpiration, and photosynthesis rates (Wang et al.,, 2010). Decreased soil fertility,
deteriorating water quality, variations in groundwater levels, and increasing salinity
in certain regions are now significant challenges for contemporary agriculture. A
shortened growing season, water shortages, elevated temperatures, and heat
stress during critical physiological stages of crops can lead to significant production
reductions in arid and semi-arid regions globally (Rietra et al., 2022).

The interactions between sustainable agricultural practices, crop yields, and soil
carbon sequestration are complicated, with various factors affecting the results of
these methods. Numerous studies (Blanco-Canqui et al,, 2015; Pittelkow et al., 2015)
indicate that the implementation of sustainable agricultural practices, including
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crop rotation, cover cropping, and conservation tillage, can enhance crop yields
through enhanced soil fertility, superior pest management, and more effective
water utilization. The use of sustainable agriculture practices may occasionally lead
to trade-offs between crop production and soil carbon sequestration. No-till
farming can enhance carbon sequestration by minimizing erosion and preserving
soil structure; nevertheless, it may result in diminished crop yields in certain
contexts due to the slower mineralization of organic matter and decreased nutrient
availability. Recognizing and resolving these trade-offs is crucial for the effective
implementation of sustainable agricultural practices (Saliu et al, 2023). Recent
advancements in agricultural technologies, including precision agriculture and
remote sensing, have created novel possibilities for optimizing sustainable farming
practices and improving their impact on crop yields and soil quality. Schut et al.
(2018) observed that the combination of precision agricultural technologies with
sustainable practices, including site-specific fertilizer management and variable-
rate irrigation, led to enhanced crop yields and reduced environmental impacts.
Sustainable agriculture includes many farming strategies designed to improve the
long-term production, resilience, and environmental sustainability of agro-
ecosystems. The fundamental principles of sustainable agriculture are rooted in
agro-ecology, highlighting the significance of conserving biodiversity, fostering
nutrient cycling, and strengthening the resilience of agro-ecosystems against
climate change and other environmental challenges. Common agricultural
practices for sustainable agriculture include (Saliu et al, 2023):

Crop rotations

This practice enhances soil fertility by inhibiting the accumulation of pests and
pathogens, regulating nutrient cycling, and preserving soil structure. Numerous
research experiments appearing in meta-analysis publications in literature (Rietra
et al,, 2022) have shown that crop rotation can augment crop yields by improving
soil nutrient availability, diminishing insect pressure, and facilitating more efficient
water utilization. Crop rotations, when combined with conservation tillage,
sequester greater amounts of soil carbon sequestration than mono-cropping, as
demonstrated by numerous researchers conducting various field tests across
diverse climatic conditions (Poeplau et al., 2015). Crop rotations, while having a
lesser impact on soil carbon than other practices, can influence soil carbon through
enhanced biomass production and carbon inputs from various crops, as well as by
modifying pest cycles, diversifying root structures, and altering rooting depth.
Crops that produce high residues may sequester more carbon than those with little
residue input. The intensification of cropping systems, including an increased
frequency of crops per year, double cropping, and the incorporation of cover crops,
can enhance soil carbon storage (Mandal et al., 2020).

Cover cropping

The practice refers to the cultivation of non-harvested plants during or between the
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growth seasons of primary crops to provide multiple ecosystem services, including
weed suppression, soil erosion mitigation, and nutrient cycling (Blanco-Canqui et
al., 2015). Cover crops can improve soil health by increasing organic matter,
enhancing soil structure, and fostering soil biodiversity. A meta-analysis by Wang
et al. (2020) revealed that the use of cover crops significantly increased crop yields
by an average of 14% and concurrently improved soil health metrics, including soil
organic matter and nutrient availability. Cover crops can significantly increase soil
organic matter by introducing fresh plant residues, promoting microbial
breakdown, and improving soil carbon sequestration. The meta-analysis
conducted by Poeplau and Don (2015) indicated that cover cropping significantly
enhanced soil organic carbon stocks, with the most substantial gains occurring
when cover crops were cultivated in mixtures rather than as monocultures.

Conservation tillage

This practice comprises a series of soil management techniques designed to
minimize soil disturbance and preserve soil cover, hence reducing soil erosion,
sustaining soil structure, and improving water infiltration. Conservation tillage
strategies encompass no-till, reduced tillage, and strip tillage (Kassam et al., 2019).
Research indicates that conservation tillage enhances soil health by augmenting
soil organic matter, fostering soil biodiversity, and diminishing soil compaction
(Blanco-Canqui et al, 2015). The effect of conservation tillage on crop yields is
context-dependent, with certain studies indicating yield increases and others
indicating reductions (Blanco-Canqui et al, 2015; Pittelkow et al, 2015). The
advantages of conservation tillage in reducing runoff and soil erosion are well
recognized and when utilized alongside crop residues and cover crops,
conservation tillage enhances soil structure and increases the soil organic carbon
pool. The advantages of conservation tillage in carbon sequestration arise from
both the enhancement of soil organic carbon (SOC) content and the reduction of
CO, emissions associated with plowing, as well as decreased fuel consumption.
Reportedly, the effect of conservation tillage on soil organic carbon sequestration
may be more pronounced in degraded soils compared to fertile soils (Mandal et al,,
2020).

Organic farming

Organic farming practices are an agricultural approach that utilizes natural
processes and inputs, including compost, manure, and biological pest control, to
improve soil fertility and manage pests, as opposed to synthetic fertilizers and
pesticides (Mandal et al.,, 2020). Organic farming generally produces lower crop
yields compared to conventional farming because of the diminished utilization of
synthetic inputs. Nevertheless, certain studies indicate that organic systems can
attain yields comparable to conventional methods under specific circumstances,
especially when integrated with other sustainable agricultural practices or
cultivated in soils rich in organic matter. A meta-analysis study (Seufert et al., 2012)
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revealed that organicyields were, on average, 19-25% inferior to conventional yields;
however, the yield gap dropped to 9% under ideal conditions. Organic farming can
improve soil organic matter by integrating organic materials, such as compost and
animal dung, into the soil and fostering soil microbial activity. Gattinger et al. (2012)
conducted a meta-analysis study revealing that organic farming enhanced soil
organic carbon stocks by an average of 18% relative to conventional farming, with
the most significant increases noted in systems characterized by high organic
input rates.

Agroforestry

Agroforestry is a land-use strategy that combines trees with crops and/or livestock
to develop multifunctional landscapes. These practices can improve soil health by
increasing soil organic matter, enhancing nutrient cycling, and fostering soil
biodiversity (Mandal et al.,, 2020). Agroforestry systems offer several ecological
services, including carbon sequestration, microclimate regulation, and habitat
supply for pollinators and other beneficial species. Numerous studies have shown
that agroforestry can augment agricultural yields by raising nutrient availability,
improving water use efficiency, and offering shade and wind protection (Smith et
al,, 2012; Coe et al., 2014).

The concept of 'cropping systems' represents the crop variety, crop rotation, and
agronomic management practices employed in a specific field over several years.
Decisions on these factors can affect both the viability and sustainability of
agricultural production. These systems are defined as soil-improving if they lead to
a sustained enhancement of the soil's capacity to perform its functions, particularly
food and biomass production, buffering and filtering capacities, and the
maintenance of additional ecosystem services (Hessel et al., 2022). Soil Improving
Cropping Systems (SICS) can adopt and combine several management approaches
like crop rotation, inter-cropping, and cover crops between growing seasons, crop-
residue management, manure application, reduced tillage or no-tillage, N-
fertilization with straw/stalk and more. A thorough literature review revealed the
reported results from several meta-analysis studies on SICS evaluation, mainly with
the use of data from long-term experiments (LTEs) across EU and worldwide,
emphasizing the advantages as well as the challenges of SICS adoption in the long-
term i.e. decade-long application or more.

The results from LTEs and meta-analysis studies (Rietra et al.,, 2022; Poeplau et al,,
2015) indicated a slight beneficial effect of SICS on the environment, including soil
guality, no influence on sustainability, and a minor negative impact on economics
and the sociocultural dimension. Certain treatments exhibited both elevated and
diminished impact scores across the parameters of the sustainability assessment,
highlighting the trade-offs in the effectiveness of a SICS. Certain treatments
resulted in either negligible or adverse effects (e.g., early wheat sowing), while other

103



iterreg Co-funded by
Euro-MED o the European Union

CARBON 4
SOIL QUALITY

treatments had favorable impact ratings across all dimensions (e.g., nitrogen
fertilization with straw/stalk). SICS possess the capacity to lower long-term
expenses by minimizing dependence on costly external inputs like fertilizers and
pesticides, decreasing energy consumption for machinery operation, and/or
limiting labor requirements. Even though certain SICS can result in lower
productivity i.e. crop yield, they might use inputs more efficiently because of their
increased efficiency (Hessel et al., 2022).

The significant potential of carbon sequestration in agricultural land offers a
feasible strategy for reducing atmospheric CO2 levels to mitigate climate change.
This technique relies on SICS as operational frameworks for growers to adhere to in
their crop production practices. An optimal farming system for carbon
sequestration should generate and sustain a substantial quantity of biomass or
organic carbon in the soil. The concentration of organic carbon in the surface soil
(0-15 cm) mostly relies on the total input of crop residues either left on the surface
or integrated into the soil. Removing crop residues from the soil significantly
reduces soil carbon levels. Consequently, enhancing carbon sequestration
necessitates an increase of plant biomass residue input (Wang et al., 2010). Biomass
accumulation can be increased through higher cultivation intensity, the cultivation
of cover crops during inter-cropping seasons, the reduction of land fallow periods,
crop rotations, and inter-cropping systems. The return of biomass to the soil can be
enhanced by eliminating summer or winter fallow and maintaining a dense
vegetative cover on the soil surface, which also mitigates soil erosion and prevents
soil organic carbon loss. Insights concerning results from individual or combined
SICS applications through LTEs are summarized below.

Crop rotation

The impacts of crop rotation, inter-cropping, and cover crops on crop productivity,
soil quality, and the environment were generally favorable in nearly all studies
(Rietra et al., 2022). The results are dependent upon the nitrogen fertilization rate:
yield benefits are maximized during low nitrogen fertilization. The parallel
cultivation of multiple crop species inside a single field for certain parts of the
growing season (inter-cropping) positively influences crop output; however, the
magnitude of this effect is highly dependent upon the specific crop varieties and
inter-cropping configurations employed. Implementing cover or catch crops
following the primary crop mitigates soil erosion and nitrate leaching while
enhancing soil carbon sequestration.

Further results indicate that poor crop rotation will eventually lead to a decline in
soil productivity and biomass production, resulting from an increase in infestations
from weeds, diseases, and insects (Wang et al,, 2010). Enhancing cropping intensity
by minimizing the duration of bare land fallow during crop rotation is an efficient
strategy to augment biomass output and soil carbon sequestration. Furthermore,
higher cropping intensity can reduce the rate of organic matter decomposition and
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the mineralization-oxidation of SOC. Similarly, cover cropping systems offer an
effective approach to enhance carbon sequestration for climate change mitigation
(Baartman et al., 2022). Meta-analysis studies (Rietra et al., 2022; Poeplau et al., 2015)
highlight the fact that soil organic carbon sequestration rates seen in most global
cover crop studies are comparable to those associated with other organic-input-
related carbon sequestration management strategies in agricultural soils and are
nearly as effective as land-use changes such as the afforestation of croplands.
Carbon sequestration could continue for many decades, but approximately 50% of
the overall impact on soil organic carbon stores is anticipated to take place over the
initial twenty years. This strong sequestration rate, along with the extensive
geographical availability of possible cultivation sites, supports the belief that cover
crop cultivation is a sustainable and effective strategy for mitigating climate
change. Furthermore, cover crops can mitigate nutrient leaching and improve
nutrient efficiency, decrease wind and water erosion, and assist with pest
management, rendering cover crops environmentally beneficial and economically
sustainable in the long term.

Tillage

Tillage directly affects soil carbon content. Tillage may have both beneficial and
harmful effects on the soil C pool. The negative impacts of tillage include erosion,
leaching, and mineralization, whilst the beneficial effects involve the humification
of plant residues, mineral aggregation, organic compound synthesis, and the deep
deposition of carbon in soil horizons. Conservation tillage is a broad concept that
seeks to preserve moisture and minimize runoff losses. Conservation tillage may
include no-tillage, reduced tillage, ridge tillage, and mulch tillage. All these tillage
approaches adhere to three fundamental principles: i) minimal soil disturbance, ii)
retention of crop residues on the soil surface, and iii) no or minimal traffic on the
agricultural land (Busari et al. 2015).

Meta-analysis studies have shown that conservation tillage, including no-tillage or
reduced tillage, often leads to decreased crop yields, increased soil organic carbon
(SOC) contents in the topsoil, higher soil biodiversity and increased abundance of
soil organisms, compared to conventional tillage. However, it also results in greater
emissions of nitrous oxide (N-.O), and the extent of these effects vary with climate
conditions (Hessel et al., 2022). The yield penalties associated with no-tillage are
closely related to crop residue return and crop rotation and tend to be more
significant in tropical regions compared to temperate regions. Notably, these
penalties diminish with the prolonged use of no-tillage practices. Although no-
tillage typically incurs lower production costs than conventional tillage, the
additional carbon sequestration it provides is minor and highly variable, leading to
fluctuations in the net economic benefits (Hessel et al, 2022). Long-term
experiments (LTEs) have demonstrated that combining conservation tillage with
crop residue significantly enhances carbon sequestration compared to
conservation tillage alone. To maximize soil carbon sequestration, larger quantities
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of plant residues must be returned to the soil while keeping soil disturbance to a
minimal (Wang et al., 2010).

Crop residue

In conservation agriculture, crop residues are returned to the soil to improve soil
guality and reduce soil erosion, often in conjunction with zero-tillage or reduced-
tillage practices. LTEs have shown that crop residue management and mulching
lead to increased crop yields, with improvements in water and nitrogen usage
efficiency. By reducing soil evaporation, mulching allows more water to be available
for crops, leading to higher yields (Rietra et al., 2022).

Results from LTEs across the European Union (EU), have demonstrated that
incorporating agricultural residues into the soil or applying farmyard manure
significantly improves soil structure, including water-stable aggregates and bulk
density. However, soil organic carbon content and plant-available water content
did not show substantial increases despite these beneficial effects on yield and soil
structure (Hessel et al,, 2022). Other LTEs (Poeplau et al,, 2015) found that manure
application mitigated the yield gap between organic farming and conventional
treatments using mineral fertilizers, while also decreasing soil bulk density. Studies
examining sustainable intensification cropping systems (SICS) with varied crop
residue management showed that returning crop residues reduced the need of
fertilizers. Overall, crop residue return has a positive impact on soil carbon
sequestration and soil microbial activity, although it is associated with increased
N.O emissions (Rietra et al., 2022). Conservation agriculture, which integrates crop
residue mulching and no-till, can increase soil organic carbon by conserving water,
minimizing soil erosion, improving soil structure, and lowering atmospheric CO;
enrichment levels (Rietra et al,, 2022). Ridge tillage, when combined with fertilizers
and crop residues, have also proven effective in sequestering soil organic carbon
particularly through erosion control (Baartman et al. 2022).

The climate crisis, coupled with extreme weather events, poses significant risks to
global crop yields and their stability globally (Reyes et al., 2021). The four primary
climatic factors influencing crop productivity are rising atmospheric temperatures
in the atmosphere, changes in precipitation patterns, increased CO,concentration,
and rising tropospheric ozone (Os) levels (Lobell and Gourdji 2012).

Global temperatures are increasing at a rate of approximately 0.3 °C for maximum
temperatures and 02 °C for minimum temperatures per decade. Higher
temperatures are likely due to an increased occurrence of heat events and a
reduced frequency of cold events, both of which affect crop growth and quality.
Projections indicate that global temperatures will rise by 1 °C within the next
decade, with agricultural regions experiencing an even greater increase due to
faster warming of terrestrial areas compared to oceans (Tarig et al, 2020).
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Temperature directly impacts crop development and yield through its effects on
photosynthesis, water use, crop duration, and susceptibility to physical damage
and pest infestations (Lobell and Gourdji 2012). Precipitation variability also
significantly influences crop yield by affecting soil moisture, which is crucial for crop
growth. Southern Europe (Tariq et al., 2020) is expected to experience more severe
droughts, leading to higher water stress for crops. Drought conditions promt plants
to close their stomata, which limits carbon uptake and exacerbates heat stress,
further reducing crop growth and yield. Conversely, increased precipitation can
lead to flooding and waterlogging, which damage crops and reduce soil fertility
(Hatfield et al. 2011). Temperature dynamics under climatic change involve more
extreme heat events, which are harmful to crops, and fewer cold waves (Tarig et al,,
2020).. Crops vulnerable to high temperatures will become increasingly susceptible
to heat waves, resulting in earlier senescence, shorter grain-filling periods, impaired
leaf water relations, and photosynthetic suppression (Asseng et al. 2015).

Since the industrial revolution, atmospheric CO, concentrations have risen by 46.5%
from 278 ppm to 407.4 ppm in 2018, with an average annual increase of 2 ppm in
the 2000s (Lobell and Gourdji 2012). CO; levels are projected to reach 500 ppm by
the mid-21st century (IPCC 2001). The global increase in CO; levels mitigates some
of the negative effects of rising temperatures and intensifying droughts, enhancing
global crop yields by approximately 1.8% per decade. However, temperature
increases are expected to reduce crop yields by around 1.5% per decade (Tarig et al,,
2020). The interaction between higher CO, levels and rising temperatures present
both opportunities and challenges for crop productivity, with CO, boosting
photosynthesis and growth, but potentially failing to offset yield losses caused by
heat stresses (Chavan et al., 2019).

Air pollution from sources like nitrogen oxides, carbon monoxide, and methane has
led to rising tropospheric ozone (Os) levels, which increased from 10-15 ppm in the
preindustrial era to over 35 ppm due to elevated industrial emissions. Future Oz
levels remain uncertain due to gaps in understating Oz emission mechanisms and
pollutant control strategies (Tarig et al., 2020). Effects of climatic change on crop
production are complex, with interactions between temperature, CO2, and O3
making it difficult to predict the net impact of these variables (Sangeetha et al.
2018).

Soil carbon sequestration offers a potential strategy for mitigating the adverse
impacts of climate change on food security (Lal 2016). Climate-induced changes in
temperature and precipitation affect the decomposition rates of SOC and the
balance between storage and release. Soil organic carbon stock commonly
increases as global temperatures decline. Cold and humid regions exhibit elevated
soil carbon content in contrast to semiarid and arid climates. The climate and the
type of organic matter added to the soil are significant factors affecting CO, output.
Elevated temperatures result in increased CO, output from the soil. As global
temperatures rise, decomposition accelerates, reducing the retention time of
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carbon in the soil (Hammad et al. 2020). This suggests that soils could become a
significant source of CO, emissions in the future. Soil organic matter originates from
the decomposition of plant and animal wastes and the ongoing degradation of
these plant components yields more stable forms known as humus. Typically,
humus can persist in the soil for approximately 27 years. It is now widely recognized
that the decomposition of soil organic matter is an ecosystem characteristic rather
than simply a compositional attribute (Schmidt et al. 2015). The decomposition of
organic molecules in an ecosystem is conditional to environmental and biological
factors. The decomposition process impacts soil biodiversity. An accelerated
breakdown process in soil promotes the accumulation of microbial communities.
Factors like moisture, temperature, material decomposition, and microbial
community structure influence the residence period of the introduced carbon
source in the soil. Consequently, understanding these dynamics is crucial for
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Soil quality monitoring in Euro-MED region is essential to effectively manage
agricultural systems and improve productivity without causing environmental
degradation. This deliverable focuses on the monitoring of Soil Organic Matter
(SOM) and soil quality. It sets forth defined goals regarding the main aspects of soil
quality assessment. The key points regarding the objectives set in Chapter 1, are
discussed below and have been achieved by a thorough and detailed examination
and reporting of the most important scientific advancements specifically related to
SOM.

Selection of indicators to assess soil functioning, standardization of
reference values of soil indicators, and selection of a Minimum Data Set.
The assessment and measurement of soil quality are typically determined by
considering the spatial and temporal variations of specific properties. Several
basic soil characteristics has been suggested as indicators of soil quality. From
this collection of data, it is possible to derive other significant indications such
as water availability, microbiological quotient, and respiratory quotient. A
suggested standard for soil quality indicators is the capacity to identify a 10%
change with a 90% confidence level. Certain indicators may suffer due to their
significant temporal and/or geographical variation, or difficulty in interpreting
their reaction to change. Choosing a suitable set of indicators or using
substitute indications for a soil quality assessment is a crucial first stage in
monitoring soil quality.

Propose carbon sequestration models adapted for MED agriculture. Both
probabilistic or process-based models, and stochastic or statistical models
were examined and tested in typical Med conditions. A thorough literature
review revealed the advantages and shortcomings of several modeling efforts,
facilitating the modeling choices for future development. SOM models are
utilized extensively as valuable tools for bringing together and examining
experimental data, describing effects, and extrapolating results. Additionally,
they are employed to project the behavior of SOM under present and future
environmental conditions. Furthermore, these models aid in decision-making
processes across multiple levels and by diverse users. SOM models continue
to be among the most significant tools we have for enhancing our
understanding of the dynamics of soil organic matter.

Propose standardization of soil sampling schemes and building consistent
soil quality related databases. Compliance with existing databases like
LUCAS and WoSIS is essential; given the extensive range of soil characteristics
considered, LUCAS Soil is one of the largest and most comprehensive,
standardized soil databases on a continental scale worldwide.
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e Propose analytical determination of organic carbon in soil and simple on-
field procedures (in-situ check of soil quality). Recent advancements in quick
dichromate oximetric colorimetric techniques, which entail subjecting the
sample to refluxing with external heating, provide SOC (soil organic carbon)
values that are equivalent to those produced using automated dry
combustion procedures. A straightforward and efficient method for
measuring the easily decomposable carbon in soil by mild permanganate
oxidation has the potential to identify changes in soil organic matter quality
at an early stage. Each technique for determining SOC has inherent
limitations, and the user should choose the approach that is most suitable for
the kind of soils being studied, the anticipated recovery, and the desired level
of accuracy for the findings.

e Propose SOM monitoring methodology; possible inclusion of novel Near-
Infrared Reflectance Spectroscopy or colorimetry-based techniques. With
recent improvements in VisNIR equipment, it is now feasible to get in situ
VisNIR spectra measurements from soils.

e Evaluate the impact of agricultural practices, Soil Improving Cropping
Systems, and climate crisis on crop production and carbon sequestration.
Numerous findings exist about carbon sequestration or soil organic carbon
storage in croplands via integrated cropping systems and techniques,
including conservation tillage, cover cropping, crop rotation, shifting
cultivation, and fertilization. The soil organic carbon pool possesses significant
potential for carbon sequestration, and integrated cropping systems,
together with associated agricultural practices, have demonstrated good
prospects for atmospheric carbon capture and climate change mitigation. In
conclusion, sustainable farming practices can improve crop yields and soil
health, while simultaneously fostering the conservation of natural resources
and reducing environmental consequences. The literature review indicates
that sustainable agricultural practices, including crop rotation, cover
cropping, conservation tillage, and organic farming, enhance soil organic
matter, nutrient cycling, and soil biodiversity, thereby increasing crop yields
and carbon sequestration potential.
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