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1 INTRODUCTION 
Carbon sequestration is crucial for the effective removal of greenhouse gas 
emissions and can thereby have substantial effects on the atmosphere and climate 
change. 

Smith et al (2020) state that there is an increasing global interest in improving soil 
management in order to increase soil organic carbon levels, promote climate 
change mitigation, strengthen resistance to climate change, and support food 
security. 

The composition of soil organic matter affects soil functions and characteristics. Soil 
organic carbon plays a crucial role in the overall behavior of soils and agro-
ecosystems. It supplies energy for soil microorganisms, stores and supplies 
nutrients (nitrogen, phosphorus, and potassium) for plant growth, enhances soil 
structure, and contributes to the soil's capacity to retain water and resist erosion.  

Schillaci (2018) states that Mediterranean regions have faced significant human 
pressures, such as fires, intense land cultivation, and other forms of inadequate 
management. The phenomena have resulted in detrimental effects on both 
natural and agricultural ecosystems, leading to significant land degradation 
through desertification, soil erosion, landslides, and declining SOC levels. (Saia et al. 
2017; Persichillo et al. 2017) 

This deliverable contributes to WP2 where a solid base for future testing of carbon 
farming in the Euro-MED area will be prepared through elaboration of a feasible 
action plan, training material, improved visibility and policy connections for future 
cooperation. The objective of the deliverable is to propose standards to properly 
assess SOM content and soil quality. Specific objectives are: 

• Selection of indicators to assess soil functioning, standardization of reference 
values of soil indicators and selection of a Minimum Data Set. 

• Propose carbon sequestration models adapted for MED agriculture. 

• Propose standardization of soil sampling schemes and build consistent soil 
quality related databases and references 

• Propose analytical determination of organic carbon in soil and simple on-
field procedures to self-check soil quality at the farm level. 

• Propose a SOM monitoring methodology including possibility to use novel 
Near-Infrared Reflectance Spectroscopy or colorimetry-based techniques. 

• Evaluate the impact of agricultural practices, Soil Improving Cropping 
Systems, and climate crisis on crop production and carbon sequestration. 
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The deliverable is structured in five chapter as follows: 

Chapter 1. Introduction, presenting the general scope of the deliverable. 

Chapter 2. Monitoring of SOM, in which the methods for measuring SOM are 
presented. 

Chapter 3. Monitoring of Soil Quality, in which an extensive analysis on soil 
quality monitoring and soil quality quantification is described. 

Chapter 4. Soil carbon sequestration models, where a review of existing 
approaches and models is presented, including applications of selected models.  

Chapter 5. Consistent soil quality related databases and references, in which 
existing global, European and national databases of soil quality indicators are 
presented. 

Chapter 6. Conclusions. 

1.1 References 

Persichillo M.G., Bordoni M., Cavalli M., Crema S. & Meisina C. (2017) - Evaluation of 
anthropogenic effects on the sediment delivery dynamics in response to slope 
instability. Rend. Online Soc. Geol. It., 42, 5-9. doi: 10.3301/ROL.2017.01. 

Saia S., Schillaci C., Lipani A., Fantappiè M., Märker M., Lombardo L., Matranga M.G., 
Ferraro V., Guaitoli F. & Acutis M. (2017) - Protection of soil from the loss of organic 
carbon by considering erosion and managing land use at varying soil type: 
indication from a model semiarid area. In: Global Symposium on Soil Organic 
Carbon. Rome, Italy, pp. 510-515. 

Schillaci, C., Saia, S. and Acutis, M., 2018. Modelling of soil organic carbon in the 
Mediterranean area: a systematic map. Rend. Online Soc. Geol. Ital, 46, pp.161-166. 

Smith, P., Soussana, J.F., Angers, D., Schipper, L., Chenu, C., Rasse, D.P., Batjes, N.H., 
Van Egmond, F., McNeill, S., Kuhnert, M. and Arias‐Navarro, C., 2020. How to 
measure, report and verify soil carbon change to realize the potential of soil 
carbon sequestration for atmospheric greenhouse gas removal. Global Change 
Biology, 26(1), pp.219-241. 
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2 MONITORING OF SOM 

2.1 Introduction 

Soil organic matter, a complex, dynamic component of terrestrial ecosystem, is a 
core indicator of soil quality. Carbon is the prime element present in SOM, 
comprising 48%-58% of the total weight. Rapid and precise measurement of soil 
organic carbon is essential to monitor temporal changes in SOM content. Since 
total C is the sum of both organic and inorganic C pools, several methods have been 
developed or modified over the years to determine SOC. A brief description of the 
measurement, principles, merits and limitations of the commonly used methods 
for measurement of SOC is discussed. 

2.2 Soil sampling 

2.2.1 SOIL SURVEY 

Soil survey is a complex process that depends on proper specification and sound 
planning. An important part of the soil survey is the selection of the most suitable 
sampling scheme which should be aligned with the general and specific purpose 
of the field survey, prior knowledge of the region, scale, and the surveyor 
experience. 

McKenzie et al. (2008) refer to two general types of field surveys: qualitative and 
quantitative methods of survey. Qualitative methods include a) an integrated 
survey, that relies on the assumption of interdependency of land characteristics 
and their correlation with environmental features and is intended primarily to 
identify the soils and vegetation within the targeted areas, b) free surveys, which 
are the conventional form of soil survey while the c) the stratigraphic survey, which 
places emphasis on the soil mantle rather than the soil profile. The soil materials 
approach is a hybrid type of soil survey that descriptions and definitions of soil 
materials are based on their morphology, without considering their position in the 
soil profile. Qualitative grid survey is a method where field survey is based on a 
regular grid.  

Quantitative soil survey includes the analysis of soil behavior and land attributes 
considering the quantitative inputs and outputs by using empirical and process 
models across different ranges and scales. Commonly used quantitative methods 
are based on geostatistical approaches, where maps are produced as grid 
estimates based on field data. Another set of statistical quantitative methods are 
correlation, regression, collectively known as environmental correlation (e.g. 
SCORPAN, McBratney et al 2003). 
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2.2.2 APPROACHES AND STRATEGIES IN SOIL SAMPLING 

Soil forms a nearly continuous mantle whose properties and characteristics change 
continuously in space. Only a few soil properties can be observed from the soil 
surface, so the soil properties must be observed through the excavation of soil 
profiles or by soil sampling at a certain depth.  

Sampling is the process of choosing a subset of samples to measure from the entire 
population. The measurements taken on this subset, or sample, are subsequently 
used to estimate the parameters, or attributes, of the entire population. There is no 
naturally defined volume of quantity to be used as a representative sample. 
Choosing the most effective technique for selecting the samples that will finally be 
used to estimate the population's attributes is known as sampling design. (Carter 
and Gregoric 2008). 

Choosing the right time and place to take the soil sample and how to collect the 
samples are the main questions that significantly influence the survey`s success 
and usefulness, which is primarily determined by the purpose of investigation and 
logistic constraints. A good strategy for planning the scheme is to start at the end 
and reason backward (de Gruijter, 2000). In the case of the LUCAS survey program, 
sampling points with similar densities were allocated for each country, rather than 
allocating sampling points according to soil heterogeneity. Random distribution of 
the sampling locations is an approach often used for monitoring scheme 
inventories, while the second approach when soil heterogeneity is the primary 
criterion, is used for systematic soil surveys for mapping purposes.  

Sampling locations can be chosen following a system of a) haphazard sampling 
when sampling locations are selected with no preferences or criteria, b) judgment 
sampling, in which the researcher locates sapling sites by using his judgment and 
is usually used in pedogenetic and soil geomorphic studies aiming to identify the 
mechanisms responsible for the development of soil characteristics, and c) 
probability sampling (Carter and Gregoric 2008). Similarly, Gruijter (2006) proposes 
three possible modes of sample point selections: convenience method which is 
similar to the haphazard sampling method where sampling locations are selected 
on the most convenient locations for the surveyor, purposive sampling when the 
surveyor tries to locate the sample points based on a given purpose, like in the case 
of mapping soil classes, whereby the surveyor identifies the sample points in 
locations that are anticipated to provide the most valuable information regarding 
the classification of soil; and the third mode of sampling locations, which is known 
as probability sampling, where, unlike the other modes, the sample points are 
selected at random location.  

Generating a sample that is representative of the target population is the primary 
objective of sampling. The only sure way of avoiding bias inherent in purposive 
sampling is by using probabilistic sampling. If the selection of samples is not 
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probabilistic, there is a high risk that the sample will not accurately represent the 
entire population. (McKenzie at al. 2008). 

In soil and earth sciences, there are multiple choices available for creating a suitable 
sample plan. However, the most generally utilized methods are random and 
systematic sampling. Gruijter (2006) distinguishes two groups of sampling 
approaches: the design-based approach used in classical soil survey sampling and 
the model-based approach, used in geostatistics.  

In the case of the design-based approach, the locations are random while the 
population is fixed. The design-based approach assesses uncertainty by iteratively 
sampling with various sets of sample sites, treating the pattern of values in the area 
as unknown but constant. The model-based approach assesses uncertainty by 
iteratively sampling from a predetermined set of sample points and is 
recommended in cases when the spatial structure of soil variation in a certain 
region is the scope of interest, (Brus and de Gruijter 1997; de Gruijter, 2006). It should 
be noted that although probabilistic sampling avoids bias, it can be rather 
expensive.  

2.2.3 SAMPLING DESIGNS 

2.2.3.1 Simple random sampling 

In simple random sampling, it is equally probable that all samples of the defined 
size will be selected independently of one another. Apart from a fixed sample size 
that was previously determined, there are no other constraints. Initially, the 
minimum and maximum X and Y coordinates of the area are determined. For each 
sampling point, two independent random X and Y coordinates are generated from 
the pool of X and Y min and max intervals, and a point-to-polygon routine is used 
to determine whether the point falls within the area. 

2.2.3.2 Stratified Sampling 

In a stratified sampling design, the area is divided into relatively homogeneous sub-
regions called strata, and this design is based on site-specific information extracted 
from EO data, thematic maps like soil maps or land cover maps, using spatial 
pattern detection techniques. Each stratum is then sampled independently from 
each other by applying a simple random sampling design. The methods for 
selecting sampling points explained in the simple random sampling section are 
applied separately for each stratum.  

2.2.3.3 Two-Stage Sampling 

In two-stage sampling, the areas are subdivided into subareas, but the sampling is 
limited to a specific number of randomly chosen subareas called primary units. 
Sampling points within the selected strata are identified as explained in simple 
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random sampling section. This approach is used in large-scale surveys and is 
usually referred to as multistage sampling.  

2.2.3.4 Cluster sampling 

Cluster sampling involves the selection of predetermined groups of points, rather 
than selecting individual points. The number of clusters that can be created is 
indefinite, so only selected sets of clusters are sampled. The algorithm for cluster 
creation starts with the selection of a random point according to the rules of simple 
random sampling. The other points of the cluster are created following 
predetermined geometric rules (e.g. prechosen distance in both directions).  

2.2.3.5 Systematic sampling  

Systematic sampling involves randomly selecting points from a predetermined set, 
unlike the simple, stratified and two-stage random sampling methods. In this 
method, unlike cluster sampling, only one cluster is selected, so this can be 
considered as a special case of cluster sampling. The cluster should be defined to 
cover the area as well as possible, which is usually achieved by creating a cluster as 
a grid with a triangular, hexagonal, or square shape.  

The complex nature of landforms at the location of interest is also a factor to be 
considered. Either a transect or a grid can be utilized for level and near-level 
locations (Carter and Gregoric, 2008). The suitability of transects on sloping terrain 
is partially determined by the plan (across-slope) curvature. However, if there is 
significant plan curvature, one transects alone will not be adequate. In this scenario, 
a zigzag pattern or numerous, randomly positioned transects could be employed, 
although a grid pattern is more commonly utilized. 

2.2.4 ADVANCED DESIGN-BASED STRATEGIES 

2.2.4.1 Compound sampling 

Compound Sampling is a combination of the previous basic strategies. One 
example of compound strategy is a combination of a two-stage sampling method 
with systematic sampling, instead of using the simple random sampling method 
as previously explained. In this case, a square grid of 2x2 primary units is selected 
from the previously established grid of the area, and then a 2 × 2 square grid is 
applied within each primary unit.  

2.2.4.2 Spatial Systematic Strategies 

This is another group of advanced design strategies. The region is predominantly 
partitioned into square strata, with one specific point being chosen for each 
stratum, although not in an independent manner. A random X position or 
coordinate is generated for every row of strata, while a random Y coordinate is 
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generated for every column. The sample point inside a stratum is determined by 
merging the row and column coordinates. 

2.2.5 REFERENT SOIL SAMPLING GUIDES AND APPROACHES 

The USDA Field Book for Describing and Sampling Soils (2021) states that the 
usefulness of soil property data is limited without context, as it depends on a geo-
referenced description to be meaningful. The Field Book emphasizes the need to 
stratify soil areas by similar geologic and pedogenetic processes, followed by 
random sampling within the stratified areas, which is at the core of the sampling 
methodology. 

The JRC`s “Soil Sampling Protocol to Certify the Changes of Organic Carbon Stock 
in Mineral Soil of the European Union” (Stolbovoy et al 2007) defines a method for 
identifying the changes of SOC in mineral soil, referred to as Area-Frame 
Randomized Soil Sampling (AFRSS). The geolocation of each sampling location 
with sampling sites and position of the soil profile should be identified by GPS to 
enable revisiting of the sample sites. For the determination of bulk density, the JRC 
Sampling protocol recommends the method of using an undisturbed sample with 
a minimum volume of 100 cm3 taken from non-stony soils. 

According to the LUCAS methodology (Toth, G. et al, 2014), the best soil mapping is 
performed when a design-based, multi-stage stratified random sampling 
approach is chosen (McKenzie et al, 2008). The CORINE LANDCOVER 2000 dataset, 
with a resolution of 100 meters, is utilized to determine the corresponding area of 
each land use category. The quantity of selected points is directly related to the 
proportion of land use coverage in each country. The quantiles of each landform 
and land use class are combined, mapped and transformed into vectors to 
calculate the unique value of the strata in each location. After the finalization of the 
process of stratification, soil sampling locations were selected.  

2.2.6 FIELD MEASUREMENT 

Soil properties are measured and described in various units and categories 
expressed on scale or ordered according to certain criteria. In general soil attributes 
are expressed as nominal values (as a binary or multistate value), ordinal values that 
can be ordered or ranked as discrete classes, interval attributes expressed on a 
continuous scale and which do not contain true zero (pH, air temperatures), and 
ratio scale attributes. 

2.2.7 SITE DESCRIPTION 

During the field survey and collection of soil specimens for SOC measurement, it is 
of particular interest to record data for the site specifics like land use (actual and 
historical data), records for the litter and woody debris, that can be used for 
estimating total carbon density and procedures for sampling the site-carbon in 



   

 

 

 

 

 

12 

 

coarse woody debris, surface litter and roots (McKenzie et al 2008). Data related to 
management practices, soil cultivation system, cropping patterns and inputs, 
especially of organic materials, should also be recorded. 

2.2.8 SOIL SAMPLING/SPECIMEN COLLECTION 

This is the next step after the adoption of the most appropriate soil sampling 
strategy and sample design. Depending on the purpose of the field soil survey and 
soil attributes that are surveyed several approaches of the collection of samples are 
recommended according to McKenzie et al (2008), a common practice is to collect 
specimens spanning throughout the entire depth of the soil profile. Another 
method is to collect specimens from the centers of predefined sampling intervals, 
and the third recommended approach is the subdivision of soil profile into horizons. 
In such cases, when the soil profile is subdivided into soil horizons, samples are 
collected continuously throughout the entire depth of the soil horizon as disturbed 
specimens. 

In the case of interval sampling of disturbed specimens, the recommendation is to 
use a maximum sampling depth up to 10 cm, for the first 30 cm, and on 30 cm 
intervals for the depth from 30-100 cm. In some special cases of soil monitoring 
(heavy metals contents, acidification etc.) the first layer may need to be sampled up 
to 5 cm. depth. Below 2 m, the sampling interval should be sufficient to characterize 
the material found. If the measurement of organic matter and/or pH is significant, 
it is recommended to collect a sample from a depth of 0-15 cm (Carter and Gregoric, 
2008). 

The LUCAS sampling procedure recommends collecting samples from the 
designated locations by a process of composite sampling (bulk sampling). 
According to this methodology, five soil sub-samples must be collected from each 
sampling site and a mixture of these soil samples should be transported to the 
laboratory. Soil samples from the central and the four sub-sampling locations must 
be placed together in a plastic container and mixed in order to prepare the required 
composite sample. The quantity of soil needed from the composite sample is about 
500 grams. The fundamental concept of this methodology is that the soil sample 
should sufficiently represent the area defined by the chosen points. 

2.2.9 UNDISTURBED/CORE SOIL SAMPLE COLLECTION 

Some procedures involve the preservation of the natural structure of the soil. 
Physical measurements usually require the acquisition of intact samples, while 
chemical analyses are generally conducted on altered samples.  

Several soil sample procedures can be used to evaluate coarse fragments and bulk 
density, including the clod, core, pit, or excavation approach. The fundamental 
principle is to extract a sample that is larger than the largest rock within the sample. 
The level of soil structure development, soil water content, and potential distortion 
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during sampling will impact the size of the sample and the caution required during 
handling.  

2.2.10 BULK DENSITY 

Soil bulk density (ρb) is the ratio of the mass (g) of an oven-dry soil sample to the 
volume (cm) of that sample at a specified moisture condition (Sheldrick B.H. 1984). 
Multiple duplicate samples are required to obtain an accurate estimation of the 
bulk density of the soil horizon. When reporting bulk density data, it is important to 
provide the water content at which the volume measurement was taken. The 
preferred types and quantities of specimen for bulk density are: Undisturbed small 
core (100 cm3) or a large clod in 3 to 4 replications (McKenzie et al, 2008). As 
mentioned in the LUCAS methodology, the sampling point for the collection of soil 
specimens for bulk density estimation is the central sampling point of the sampling 
location (Stolbovoy et al 2007). 

2.2.10.1 Bulk density – core sampling (cylinder method) 

The core sampling cylinder method is generally used for the estimation of ρb of 
undisturbed soil. A rigid cylinder of known diameter (100 to 250 cm3) and height is 
inserted in the soil. A sample of undisturbed soil with a cylinder's exact inside 
dimension is gathered and dried. Bulk density is calculated by dividing the dry mass 
of a soil sample by its volume and is typically measured in grams per cubic 
centimeter. (g/cm3). Obtaining core samples with a core sampler is relatively simple 
if no stones are present. 

When surface core sampling is collected, the soil surface must be cleaned from 
stones or vegetation. The procedure is repeated with additional cores in close 
proximity to get an adequate number of duplicates. The core samples must be 
carefully excavated, taking care not to damage the soil sample. The successfully 
sampled cores are packed in loose soil in plastic bags or other containers.  

2.2.10.2 Deep layer soil core sampling 

When sampling core samples in deeper soil layers, a sampling kit with a soil auger 
is used and is pushed or driven into the soil until reaching the desired depth and 
then removed. Various samplers are accessible that come with a metallic enclosure 
to contain the core and facilitate convenient extraction and manipulation of the 
sample during the processes of weighing, wetting, and drying. 

2.2.10.3 Bulk density (ρb) – clod sampling 

In a clod method after excavation of the soil pit, several clods must be selected with 
select with approx. volume of about 50 to 200 cm3. The protrusions should be 
trimmed while roots are cut off with sensors. 
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2.2.10.4 Bulk density (ρb) – excavation method 

The excavation method is employed to determine the soil bulk density in situations 
where core sampling and clod methods are not feasible, such as in the presence of 
a significant amount of stones or gravel, or on sloping terrains. The excavation 
method is appropriate for soils that have a high proportion of coarse fragments, 
such as those in forests. The advantage of this method is that it can be used for 
measuring ρb on virtually all types of soil except on soils with large pores. The soil 
volume can be determined by filling the excavated hole with a measured quantity 
of uniformly graded sand of a known density or water.  

2.3 Analytical determination 

"The organic fraction of the soil exclusive of undecayed plant and animal residues 
is defined as Soil Organic Matter" (SSSA, 1997) and is synonymously named as a 
"humus." Nevertheless, when conducting laboratory analyses, the soil organic 
matter (SOM) often comprises solely of the organic elements that are present 
alongside soil particles that pass through a 2-mm sieve (Nelson and Sommers, 
1982). Soil Organic Matter is a complex mixture of animal or plant residues in 
different stages of decomposition, living or decaying microbiological tissue, and 
resistant humic substances and represents the most dynamic and active soil 
component of soils. From an agronomic point of view, SOM and its fractions have 
the most significant influence on soil fertility and plant productivity. Carbon is the 
predominant element found in SOM, accounting for 48 to 58% of the total weight. 
Therefore, organic C determinations are commonly used to quantify organic 
matter by multiplying the C value by a certain factor. (Nelson and Sommers 1982).  

Organic carbon determination can be achieved by i) analysis of total C and 
inorganic C and subtraction of the inorganic from total C ii) a total C determination 
in the soil sample, after the destruction of the inorganic C, and III) reduction of the 
C2O7

2- by organic C compounds in the soil sample, and subsequent quantification 
of the unreduced C2O7

2- by oxidation-reduction titration or other colorimetric 
techniques.  

2.3.1 TOTAL CARBON 

2.3.1.1 Medium-temperature resistance furnace 

In the processes involving dry combustion, the soil sample is burned in a stream of 
purified O2, and the CO2 in the effluent gas stream is absorbed by Accurate or some 
other absorbent and weighted. CO2 is determined gravimetrically or titrimetric. 
Reference method, but time-consuming. 
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2.3.1.2 High-temperature induction furnace 

Ignitions of the crucible with soil sample (0.5 g, 100 or 140 mech sieve) mixed with 
Fe accelerator, and Sn coated Cu accelerator, at high temperatures (>1650) in a O2 

stream. CO2 is determined gravimetrically or titrimetric.  

2.3.1.3 Automated methods 

The sample is mixed with catalysts and is directly heated on a resistance or 
induction furnace in the presence of O2 stream to convert all C to CO2. CO2 
determination is done with gas chromatography, gravimetric or conductometric, 
and IR absorption spectrometry. Rapid simple, and precise. The release of 
contaminant CO2 from alkaline earth carbonates is very slow when a resistance 
furnace is used (Rossel et. al, 2001). 

2.3.1.4 Weight loss with ignition 

The sample is heated to 430oC in a muffle furnace but gives a high level of SOM 
because weight loss is a result of the water, CO2 and other volatile compounds. 

2.3.2 ORGANIC CARBON 

Organic carbon may be determined as a  

i) Difference between the total C and inorganic C  
ii) Quantities of organic C in the sample after the destruction of the inorganic 

C and 
iii) Dichromate (Cr2O7

2-) oxidation with external heat (Cr2O7
2 oxidizes organic C 

in acid medium. Subsequent determination of the excessive quantities of 
Cr2O7

2 by oxidation-reduction titration with Fe2+ or with colorimetric 
methods) (Walkley and Black, 1934). 

iv) Dichromate oxidation with external heat (Mebius, 1960). 

Both dichromate methods are rapid, widely used, and require minimum 
equipment and skills. The Walkley and Black method that omits heating is not 
considered by the specialist as a quantitative method, while the Mebius (1960) 
technique that involves heat is considered as quantitative and represents the best 
combinations of digestion reagents, heating procedure, and titration reagents in 
among the dichromate methods (Nelson and Sommers, 1982). For a long period of 
time, a lot of efforts have been made, and solutions have been offered to improve 
the titration and to offer the most precise endpoint. The Simakov and Tsyplakov 
(1969) method with phenylanthranilic acid seems to be the most accurate and 
widely adopted approach. 
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2.3.3 BULK DENSITY 

Soil bulk density has a substantial impact on soil health and is determined by 
various parameters such as soil porosity, mineral composition, SOC (soil organic 
carbon) levels, texture, structure, and moisture content. To better understand the 
soil's physical, chemical, and biological properties, the estimation of ρb is of 
particular importance. Close relationships of ρb with other soil properties are proved 
by many authors. Xiangsheng et al. (2016) showed that SOC has a significant 
influence on soil ρb values, while Walter et al. (2016) emphasizes the importance of 
accurate and efficient methods of measuring soil ρb when recording soil organic 
carbon bulk quantities.  

Reproducibility and quality control of the core methods were found to be quite 
challenging. Many factors affect the accuracy of ρb measurement. Soil depth and 
soil types were found to affect the ρb measurements, which coupled with 
inaccuracies because of a small sample size (Walter at al, 2016). Very detailed 
explanations, comparison and evaluations of the methods for ρb measurements can 
be found in the work of: Campbel (1994), Casanova et al (2016), and AL-Shammary 
et al (2018). 

2.3.3.1 Methods for measuring bulk density 

Soil bulk density measurement methods typically fall into two distinct categories: 
direct and indirect methods. Direct methods differ from each other only in the way 
in which the sample volume is determined and it is in this respect that an 
assessment must be made as to the suitability of any method for a given purpose 
since all the methods have some limitations (Campbel, 1994). Although direct 
methods are well-established and use affordable equipment, they are time 
consuming and not suitable for rapid and accurate bulk density estimation. To 
overcome these limitations, indirect methods have been developed. These 
methods are based on the principle of scattering and attenuation of nuclear 
radiation when interacting with the soil sample and provide an indirect 
measurement of bulk density. Indirect methods involve calibrating the apparatus 
by means of samples of known bulk density. (Campbel, 1994). 

2.3.3.2 Core sampling 

The core sample method is widely employed for estimating the bulk density of 
agricultural soils. (Casanova et al., 2016, FAO 2023). In this method, an open-ended, 
metal cylinder is either pressed or hammered into the soil. The core sampling 
method is suitable for cohesive soils with water contents close to field capacity, 
which is important for heavy clayey soils with a high coefficient of swelling and 
shrinking, which can pose significant errors in the results. The approach is also 
vulnerable to errors that may occur due to compression or fragmentation of the 
core during the insertion of the cylinder.  
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In the lab, the mass of the cylinder with the soil sample (before drying) is recorded. 
One cap of the cylinder is removed, and soil samples are dried at 105 °C ±5 °C for 24 
hours or until the constant weight is achieved, to obtain the dry mass of the soil. 
After drying the cap is fitted back to the cylinder and the samples are placed in a 
desiccator until room temperature is reached. The weight of the cylinder and the 
oven-dried mass is recorded.  

The bulk density is calculated as a ratio of the net weight (minus the mass of the 
cylinder) of the dry soil mass (g) with the volume of the cylinder (cm3) multiplied by 
100, to the nearest 0.01 g/cm3  (FAO_SOP). 

2.3.3.1 Clod method (paraffin-sealed clod) 

The clod method, which is conducted in a laboratory environment, is the second 
most used methodology for assessing soil ρb (Casanova et al., 2016). In this method, 
soil ρb is measured by calculating soil mass and volume using paraffin wax, saran 
rubber, or wax mixtures. The method is time-consuming due to its complex and 
slow experimental process. The clods must be stable and have a size limit of 4–10 
cm in diameter. The immersion and weighing of a coated clod is a complex and 
demanding procedure, with the potential for increased errors in measurement. 
Casanova et al. (2016) found that the clod approach overestimates values compared 
to other direct procedures since it does not consider inter-aggregate pores or gaps. 

2.3.3.2 Excavation method (volume replacement) 

On the field, a hole approximately 10 cm in diameter is excavated and all material 
from the hole is saved in a container. The soil sample collected is dried in a 
laboratory at 105o C for approximately 24 h, depending on moisture content and its 
mass and water content determined. 

The sample volume is determined by filling the excavation with sand from a sand 
container (sand bottle). The difference in weight of the sand container before and 
after filling the excavation is recorded. The bulk density of the sand in the bottle is 
determined with a calibration test in which sand from the bottle is used to fill 
cylindrical containers of known dimensions (Campbel 1944). Thus, the volume of 
the excavated hole can be calculated and hence the bulk density of the soil.  

There are several potential sources of error in the method, but most of them can be 
avoided. It is crucial that the sand used is dry, and free of soil debris if sand is reused. 
Regular calibration tests are the best possible way to avoid such errors. The best 
practice is, if sufficient sand quantities are available, to avoid reuse. Typically, 0.2-2.0 
mm sand is used in the excavation method. However, the uniformity of the graded 
material is more important on the variation in sand bulk density than its actual size. 
Many authors propose different variations of this method to improve its accuracy, 
like Crnica (cit. Campbel 1994) who used a sand bottle with a calibrated volume so 
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the difference in sand volume before and after filling the excavation corresponds 
to the volume of the hole, so a knowledge of the sand bulk density is not required.  

2.3.3.3 Indirect methods 

To overcome these limitations, a second group of methods has evolved, in which 
the attenuation or scattering of nuclear radiation by the soil sample is used to give 
an indirect measurement of bulk density. This is achieved by calibrating the 
apparatus by means of samples of known bulk density. 

2.3.3.4 Gama radiation 

The gamma radiation method is commonly used to measure soil ρb and involves 
the use of gamma backscatter density gauges and transmission gauges. The 
gamma-ray transmission method is a precise technique for studying soil physical 
parameters. The radiation approach allows for precise identification of soil ρb due to 
the minimal impact of gamma radiation transmission on the soil's physical 
structure. Although the backscatter gauge is widely used, this methodology is 
costly and complex requiring high-tech equipment and skilled operators. Soil type 
and instrument calibration significantly influence measurement accuracy 
(Campbell 1994). 

2.3.3.5 Regression methods (PTFs) 

Regression techniques, also known as Pedotransfer Functions (PTFs), are 
fundamental in modeling cand be used indirectly to estimate the soil ρb. Different 
approaches, such as multiple linear regression, decision tree analysis, and grouping 
methods of data management, have been used to enhance the PTFs for 
determining soil ρb. Numerous studies have been tested different regression 
models to evaluate the ρb using other soil properties such as soil organic carbon 
content, texture, structure, depth, and water content, and field and climatic 
conditions (Al Shammary et al, 2018+++). 

2.4 Spectral methods 

2.4.1 INTRODUCTION 

According to Viscarra Rossel et al. (2006) standard soil chemical and physical 
laboratory analysis has been employed to enhance our comprehension of soil and 
evaluate its quality and functions. There is a worldwide need for gathering larger 
quantities of high-quality, affordable soil data to be utilized in environmental 
monitoring, modeling, and precision agriculture by developing more effective 
methods that save time and money. Diffuse reflectance spectroscopy is a viable 
option to improve or substitute traditional soil analysis methods, since it effectively 
addresses some of their drawbacks. Spectroscopy is a rapid, cost-effective, non-
destructive, relatively simple, and occasionally more precise method compared to 
traditional analysis. In addition, a single spectrum enables the simultaneous 
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measurement of many soil characteristics, and the approaches may be easily 
adapted for field use.  

 

 

Figure 2.1. The electromagnetic (EM) spectrum showing the visible and infrared 
bands (after McBratney et al., 2003). 

 

According to Smith et al (2020) the reflectance of light on soil in the infrared region 
(Figure 1) provides the methods for measuring SOC concentration, specifically, in 
visible (VIS) 400–700 nm, near infrared (NIR) 700–2500 nm and mid infrared (MIR) 
2500–25,000 nm. Predicting the soil carbon percentage of unknown samples may 
be achieved by utilizing spectral data and a statistical model that relies on a spectral 
library. 

2.4.2 NEAR- AND MID- INFRARED SPECTROSCOPY 

For measuring the C content of soil, spectroscopic methods including Near-
Infrared (NIR) and Mid-Infrared (MIR) spectroscopy are highly appealing among the 
inexpensive and simple alternative techniques. The last forty years have seen a 
significant development of these techniques in agriculture, with a boom beginning 
in the late 1980s. These techniques measure the composition of grains, fruit and 
vegetables, meat, etc. (Bellon‐Maurel & McBratney, 2011). 

According to Bellon-Maurel & McBratney (2011), the main difference between the 
two methods lies in the fact that absorption in mid-infrared spectroscopy is related 
to the fundamental bands of molecular vibration, while absorptions in the near-
infrared are related to the overtones and combinations of these fundamental 



   

 

 

 

 

 

20 

 

bands. As a result, in comparison to the MIR range, the NIR range has lower band 
specificity. Another thing to consider is that light diffuses far more in the near-
infrared than it does in the mid-infrared. Consequently, elements that influence 
light diffusion, such as aggregate size and porosity in the physical structure, as well 
as the presence of water, which alters the refractive index and, consequently, light 
diffusion, will have a significantly greater impact on NIR spectra (Williams and 
Norris, 1987) 

Absorbance at the electromagnetic radiation wavelengths in the MIR region 
(2,500–25,000 nm) is a consequence of fundamental molecular vibrations. 
Meanwhile, it is more challenging to characterize combination bands and 
overtones than those in the MIR area are the cause of the absorbance in the visible-
near-infrared (vis-NIR; 350–2500 nm) region. Regarding field applications and 
instrument portability, Vis-NIR outperforms MIR (Ng, 2022). However, thanks to 
technological advancements, portable MIR instruments are now also available (Ji 
et al., 2016; Hutengs et al., 2019). According to Soriano-Disla et al. (2014), MIR is also 
more sensitive than vis-NIR to the organic and mineral components of soils. 
Numerous studies have demonstrated that MIR, compared to vis-NIR, can produce 
more reliable predictions of several soil parameters (Reeves, 2009; Ng et al., 2019). 

For measuring C, MIR spectroscopy performs slightly better than NIR, with 
prediction errors typically 10–40% lower than with NIR. Both NIR and MIR exhibit 
significant prediction errors when the validation and calibration samples differ 
significantly, which are mostly explained by bias resulting from poor fit to the new 
data (Bellon-Maurel & McBratney, 2011). Multiple research studies have shown that 
the most effective near-infrared (NIR) range is within the 1650 to 2500 nm spectrum 
(Hummel et al., 2001; Mouazen et al., 2007; Lee et al., 2009; Morgan et al., 2009). 

2.4.3 VISNIR SPECTROSCOPY 

Our knowledge of soil functions and the ways in which land use and climate 
change influence soil organic carbon (C) reserves can be improved by measuring 
the bulk density of soil. The existing bulk density measurement techniques are 
costly, time-consuming, prone to mistakes, and confounded by the requirement to 
measure below the soil's surface. When describing the temporal and spatial (lateral 
and vertical) change of soil bulk density and associated parameters, these flaws 
become more apparent. A method that measures the bulk density of 1-meter soil 
cores that are sampled fresh, wet, and in the field using a combination of visible-
near-infrared (vis-NIR) spectroscopy and gamma-ray attenuation was developed 
by Lobsey & Viscarra Rossel (2016). 

The availability of accurate soil measurements continues to be an obstacle to 
applications like precision agriculture and digital soil mapping, despite the ongoing 
demand for soil data in these areas. The high cost of collecting soil samples and 
conducting laboratory analyses usually limits the amount of information available 
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on soil attributes. By substituting for or enhancing conventional analytical 
techniques, systems like visible near-infrared spectroscopy (VisNIR) can lower the 
expenses associated with laboratory analysis (Ackerson et al., 2017).  

Numerous soil parameters have been measured using visible-near-infrared 
spectroscopy, or VisNIR. In the lab, VisNIR is often applied to ground and air-dried 
soils. It is now possible to obtain VisNIR spectra from in situ soils thanks to recent 
advancements in VisNIR apparatus. This method offers several benefits, including 
the ability to test soil parameters without requiring the collection, preparation and 
laboratory analysis of samples. (Ackerson and others, 2017). 

2.4.4 STATISTICAL MODELS 

Several statistical approaches have been developed to estimate several physical 
and chemical properties from spectral data. Four of them are described below 
(Haghi et al., 2021). 

2.4.4.1 Partial least square (PLS) 

A popular linear regression technique that predicts the relationship between the 
spectra and observed values using latent variables is the partial least square (PLS) 
approach. The latent variables capture the highest correlation between the spectra 
and the observed values, while also reducing the dimension of the original spectra. 
The purpose of the PLS technique is to develop a model with the ideal number of 
latent variables by extracting the latent variables from the spectral data (Haghi et 
al. 2021). The literature (Abdi, 2003, 2010) contains the PLS method's specifics. 

2.4.4.2 Support vector regression (SVR) 

Over the past few years, support vector machines—a data mining technique—have 
gained a lot of popularity. Initially, this technique was created to solve classification 
issues using the concept that Vapnik (1995) first presented. Subsequently, this 
technique has been expanded to address regression problems as well. This 
method's fundamental idea is to map the non-linearly separable input data onto a 
higher dimensional feature space, where a hyperplane can be used to separate the 
data points linearly. The data is projected into a higher dimensional space using 
kernel functions (linear, non-linear, sigmoid, or radial basis). Each kernel function 
requires a distinct set of parameters to be adjusted (Haghi et al., 2021). 

2.4.4.3 Convolutional neural network (CNN) 

CNN is a subset of artificial neural networks and a deep learning technique. Several 
hidden layers, including convolutional, down sampling, flatten, fully connected, and 
optional layers (such as batch normalisation), are added to the input and output 
layers of a CNN model (Haghi et al., 2021). 
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3 MONITORING OF SOIL QUALITY 

3.1 Introduction 

The performance of soil to accomplish their functions depends on its soil quality 
(SQ), making its measurement by Soil Quality Indices (SQI) a crucial aspect. But, 
because of the multi-functionality of the soil, measuring SQ is by no means easy. 
Direct quantification of soil functions requires costly methods and labor (Wiesmeier 
et al., 2019) or in some cases, it is not possible to do so directly and must be inferred 
from certain soil characteristics (Cardoso et al., 2013). Therefore, the SQI to be 
adopted will depend on the indicators used to assess these functions, and there is 
not a universal list of SQ indicators widely accepted, since different authors define 
SQ in different ways. 

The soil quality concept was introduced in the 1960s and 1970s by authors like 
Klingenbiel and Montgomery (1961 in Costantini & Priori, 2023) Mausel (1971 in 
Bünemann et al., 2018) or Warkentin and Fletcher (1977 in Wienhold et al., 2008) as 
a framework to guide use and allocation of labor, fiscal, and other inputs to meet 
increasing demands being placed on agriculture. Since then, there has been some 
terminological controversy (Bonfante et al., 2020; Karlen et al., 2008) about the 
appropriateness of the use of the terms Soil Quality, defined as the capacity of a soil 
to function within ecosystem boundaries to sustain biological productivity, 
maintain environmental quality, and promote plant and animal health (J. W. Doran 
& Parkin, 1994; Soil Science Society of America, 2024), Soil Health, defined as the 
capacity of soil to function as a vital living system, within ecosystem and land-use 
boundaries, to sustain plant and animal productivity, maintain or enhance water 
and air quality, and promote plant and animal health (J. W. Doran & Zeiss, 2000) or 
even Soil Capability, defined by  Bouma et al. (2017) as the intrinsic capacity of a soil 
to contribute to ecosystem services, including biomass production, although this 
concept has had less impact in the current scientific literature. 

In any case, when speaking of Soil Quality or Soil Health, it is necessary to emphasize 
the dynamic dimension of the concept, as it describes the situation or condition of 
a soil as a consequence of its current or past management, as opposed to inherited 
soil quality, which is a reflection of soil-forming factors and includes soil attributes 
that will not generally respond to recent management changes (Karlen et al., 2008). 
Based on this dynamic aspect, authors such as Bünemann et al. (2018) and 
Moebius-Clune (2017) conclude that the terms Soil Quality and Soil Health can be 
considered to some extent as equivalent since the original concept of Soil Quality 
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has evolved to present soil as a living, finite, non-renewable and dynamic resource 
(Muñoz-Rojas, 2018). 

Multiple attempts have been made to develop indices to synthetically assess Soil 
Quality (de Paul Obade & Lal, 2016a, 2016b; Jian et al., 2020; Karlen & Stott, 2015; 
Mukherjee & Lal, 2014; Trasar-Cepeda et al., 1998), although the acceptance of a 
universal soil quality index (Dumanski et al., 1998) is a highly debated concept, 
which may be understood as a somewhat "institutionalized" quality concept (Sojka 
& Upchurch, 1999). However, most of them have in common that they are based on 
the establishment of a set of biotic or abiotic indicators as the basis of the 
assessment, reflecting the multidimensionality of the soil system, and differing 
subsequently in the way they interconnect these indicators and reduce their 
collinearity to obtain the quality index (Bünemann et al., 2016; Kosmas et al., 2014).  

3.2 Procedure to build soil quality indices 

3.2.1 SOIL QUALITY INDICATORS. 

The assessment of soil quality is related to the evaluation of the ecosystem services 
provided by soil. It has been stated that evaluating soil quality requires taking into 
account one or more soil functions or ecosystem services (Bouma, 2014; Reinhart et 
al., 2015), although authors such as Vogel et al. (Vogel et al., 2018) establish 
differences between the two concepts arguing that “Soil functions are produced by 
complex interactions of natural processes and are the basis for the functioning of 
terrestrial ecosystems, while ecosystem services and resource efficiency are 
defined in the context of the current human perception and may change according 
to the societal context”.  

Once an agreement is reached about the functions of the soils we want to measure 
in a certain ecosystem, the next task is to select the most appropriate soil quality 
indicators to calculate the SQI. Soil quality indicators have been defined as 
"measuring instruments that provide information on properties, characteristics 
and processes, and serve to assess the effects of management practices on a soil at 
a given point in time" (Astier-Calderón et al., 2002). Also, they are defined as 
measurable biotic or abiotic soil properties in a time- and cost-efficient way that 
contain sufficient information for the quantification of soil functions and that can 
be reproducible with a relatively low level of expertise. (Vogel et al., 2018; Wiesmeier 
et al., 2019). 

The concept of ‘within ecosystem boundaries’ for soil functionality in both Soil 
Quality and Soil Health definitions implies that SQ must be referred to the 
ecosystem where it is measured and that each soil has a different capacity to fulfil 
the different soil functions (Bloem et al., 2006). For this reason, Sánchez-Navarro et 
al. (2015) state that the SQ indicators (and the resulting SQI) must consider the 
specific ecosystem in which we work and the soil functions we intend to preserve, 
especially those of relevance in the experimental site. According to this, Drobnik et 
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al. (2018), indicate that frameworks for the proposal of soil quality indicators are 
always discipline-referenced and context-focused. Therefore, meaningful soil 
quality comparisons can only be made for a series of soils, at a specific location, with 
a known management history. Quality comparisons between different soils are 
practically meaningless due to differences in the factors inherent in soil formation 
(Karlen et al., 2008). Nevertheless, authors like Kuzyakov et al. (2020) propose an 
approach that might allow comparison of soil quality indices in different areas. 

There is not a universal list of soil properties that serve as suitable soil quality 
indicators for all regions, so a judicious selection of the most applicable indicators 
must be done (Burns et al., 2006). According to Doran and Parkin (J. W. Doran & 
Parkin, 2015), the criteria to select the indicators of soil quality primarily pertain to: 
(i) their usefulness in specifying ecosystem processes; (ii) their capacity to include 
physical, chemical, and biological characteristics; (iii) their responsiveness to 
changes in management and climate.; and (iv) whenever possible, being 
components of existing databases. In relation to sensitivity to management, Vogel 
et al. (2018) propose an interesting classification of soil attributes or properties 
according to their characteristic time scale of change: "inherent soil properties" that 
depend on parent material and soil formation stage, and are not immediately 
affected by soil management "soil state variables" observable soil attributes that 
can change on short time scales of minutes to days in response to external forcing 
and, "functional soil characteristics" falling between the other two categories, 
which might change abruptly in response to external forcing but has an 
intermediate time scale of change (days to months) as a result of internal processes 
and interactions. 

Benedetti and Dilly (2006) add to the above criteria the need for indicators to be 
understandable and useful for land managers, as well as easy and inexpensive to 
measure. Stone et al. (2016) also highlight some other aspects concerning the 
necessary skills of the person monitoring the soil, availability of the necessary 
equipment in laboratories, the time required for sampling and measurements, the 
amount of sample needed for laboratory analyses, or the reproducibility of the 
results. Rinot et al. (2019) further emphasize the need for indicators to reflect the 
connection between soil functions and management objectives. 

Several authors and institutions have developed a list of indicators over the last 
decades, accepted by the scientific community, which consider physical, chemical 
and biological properties of soils and meet the described requirements to be a 
good soil quality indicator. (Cárceles Rodríguez et al., 2022; J. W. Doran & Parkin, 
1994; Moebius-Clune, 2017; NRCS, 2008; Oliver et al., 2013; Seybold et al., 1997) Other 
authors introduce biochemical indicators, as a category, because of the difficulty of 
separating chemical and biological processes due to their dynamic and interactive 
nature and their sensitivity to any short-term management changes (Bonanomi et 
al., 2011; Brennan & Acosta-Martínez, 2019; Mondini et al., 2019; Saikia et al., 2019; 
Schoenholtz et al., 2000; Scotti et al., 2015). 
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However, a survey of 170 soil databases at European level showed that although 
over 70% of the country soil databases cover most of the primary pedological and 
chemical parameters, water content, contamination with organic pollutants, and 
biological parameters are the least often reported parameters. (Cornu et al., 2023). 
According to these authors, such differences will have consequences when 
developing an EU policy on soil quality and using the data to derive soil quality 
indicators. Similar results have been found by Valani et al. (2021) who found that 
physical indicators appear in 80% of the 92 reviewed papers on soil quality 
assessment in integrated crop-livestock-forest systems, chemical indicators in 70% 
of the studies and biological indicators in only 33%. In addition, they indicate that 
only 20% of the studies integrate the indicators in an SQI. Moreover, several 
disparities were identified in the methods employed for soil collection, preparation, 
and analysis, necessitating the implementation of harmonization processes to 
obtain a useful interpretation and to establish reference values for each indicator 
(Hughes et al., 2023). 

Bünemann et al. (2018) found in a review of 62 publications and Bastida et al. (2008), 
also found in a review of 15 publications, that total organic matter/carbon and pH 
are the most frequently proposed soil quality indicators.  After these, both groups 
of researchers found available phosphorus, various indicators of water storage, bulk 
density, texture, available potassium and total nitrogen to be the most frequently 
used. Other indicators frequently found by these and other researchers (Allek et al., 
2023; Brichi et al., 2023; T. Yang et al., 2020) were:  (i) Chemical indicators: electrical 
conductivity, cation exchange capacity, available nitrogen, heavy metals, other 
macronutrients, sodicity, salinity, micronutrients and labile C and N; (ii) physical 
indicators: structural stability, soil depth, penetration resistance, hydraulic 
conductivity, porosity, aggregation and infiltration; and (iii) biological indicators: soil 
respiration, microbial biomass, N mineralization, soil enzymes and earthworms. 
Zornoza et al. (2015) agree with this presentation of soil quality indicators but warns 
of the virtual absence of human health indicators or exposure pathways in soil 
quality assessments. Basak et al. (2022) also highlights the need to pay special 
attention to the selection of analytical techniques for the measurement of physical, 
chemical, and biological indicators of some special soils, such as salt-affected or 
alkaline soils. 

Costantini and Priori (2023) propose a grouping of soil quality indicators, 
susceptible to be affected by changes in soil management, according to their 
relevance in providing specific functions, concerning (i) water supply; (ii) oxygen 
supply; (iii) nutrient supply; (iv) regulation of runoff; (v) sediment production; (vi) 
groundwater recharge; (vii) purifying capacity and regulation of contaminants; (viii) 
carbon sequestration; (ix) biological activity and cycling of organic matter and 
nutrients; and (x) biodiversity pool, and propose a table with the most relevant and 
commonly used in monitoring programmes, which, to a large extent, coincides 
with those previously stated by Bünemann et al. (2018) and Bastida et al. (2008) 
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Other authors use scientifically well-established composite indices as basal 
indicators of soil quality that can participate in the development of the soil quality 
index. Thus, Jiang et al. (2025) suggest a standardized framework for evaluating soil 
quality that considers heavy metal contamination and microbial-induced 
resilience, by using well-known indices like Shannon-S, Shannon-F, Pielou-S, Chao1-
F, Geo-accumulation index or Nemerow’s pollution index and build two new 
indexes Soil Resilience Index, the Soil Contamination Index, to calculate the SQI. 

The advent of new technologies, such as near-infrared spectroscopy (NIR), portable 
X-ray fluorescence, and remote sensing, along with other non-destructive methods 
like X-ray tomography, offers the ability to quickly and inexpensively access a wide 
range of soil properties (Askari et al., 2015a; Chabrillat et al., 2019; Chaudhry et al., 
2024; Muñoz-Rojas, 2018; Paz-Kagan et al., 2014; Silva et al., 2023). Real-time 
continuous soil monitoring (RTCSM) seems promising (Fan et al., 2022). Machine 
learning and artificial intelligence are being used to develop models to estimate 
soil quality from the processing of multidimensional data obtained with remote 
sensing (Diaz-Gonzalez et al., 2022).  Significant progress has been made in 
biological and biochemical indicators of soil quality over the past decade. In 
addition to the widespread adoption of biochemical, physiological, and metabolic 
techniques for determining microbial biomass and respiration (Ashraf et al., 2022; 
G. Li & Wu, 2018), the characterization of soil microbial communities is increasingly 
used as an indicator of soil biological quality (Orgiazzi et al., 2015). The use of 
multiomics approaches can provide a more accurate and realistic view of 
microbiome, which can be used for the assessment of soil quality (Maurya et al., 
2020). These techniques are also beginning to provide a deeper understanding of 
the functionality of different taxa in soil and the relationship between microbial 
diversity and ecosystem functionality.  

To include biological indicators in soil quality assessments, Creamer et al. (2022) 
have developed an integrated framework for defining the role of soil biota in soil 
multifunctionality, using the hierarchical multi-criteria decision structure following 
Debeljak et al. (2019). Bhaduri et al. (2022) classify the bio-indicators that have 
emerged as a consequence of these new techniques into four categories: (i) 
Physiological, which includes indicators such as Microbial Biomass Carbon, N or P, 
and Sustrate Induced Respiration; (ii) Metabolic, which includes the analysis of 
sterols, proteins or common enzymes for microbial activity, such as dehydrogenase, 
phosphatase, urease or beta-glucosidase; (iii) Functional, BiologTM or PLFA for 
analysis of microbial communities; and (iv) Molecular, based on the extraction of 
DNA or RNA from soil.  

Soil Quality assessment needs to include baseline or reference values to enable 
identification of management effects on soils (Bünemann et al., 2018; Karlen et al., 
2008). This baseline can be established at the first time a Soil Quality Assessment is 
carried out, so that subsequent assessments can determine the trend of both the 
SQI and the indicators used in response to the management decisions made. 
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Alternatively, this baseline can be established based on an undisturbed ecosystem 
with the same soil, climatic conditions and vegetation cover as the area to be 
assessed. (Allek et al., 2023; Bai et al., 2018). For this to be possible, it will also be 
necessary to use standard methods for both soil sampling and analysis of selected 
indicators. (Nortcliff, 2002). 

However, the need for continuous assessment of soil quality over time by soil 
sampling and analytical procedures may involve high costs, which may discourage 
the land manager or may overextend the time interval between two successive 
assessments (Maharjan et al., 2024). In this sense, authors such as Read et al. (2016) 
propose the Landscape Function Analysis (LFA) method as a conceptual, 
methodological and interpretative framework that allows a quantitative 
assessment of soil functions. The method is based on the use of 11 visually acquired 
soil surface assessment indicators, which relate specific soil properties and 
processes. These indicators are used to obtain three integrated indices: soil stability, 
infiltration and nutrient cycling, strongly linked to the provision and regulation of 
ecosystem services, including the retention of soil, the cycling of water and 
nutrients, the production of biomass, and the storage of carbon.  

3.2.2 STANDARDIZATION OF SAMPLING AND ANALYSIS METHODS FOR SOIL 
QUALITY INDICATORS 

To achieve a standardization of sampling and analysis methods, The International 
Organization for Standardization, ISO, works in the development of international 
technical standards, contributing to all the Sustainable Development Goals (SDG) 
(Figure 1). 

 

 

Figure 3.1. ISO standards applicable to each SDG. Source: ISO, n.d. 

 

The international standards on environmental sustainability provide a transparent 
and pragmatic approach to attain operational excellence, adhere to legal 
obligations, and fulfill the expectations of stakeholders. Implementing these ISO 
standards enables firms to establish themselves as frontrunners, achieve cost and 
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resource savings, and earn confidence and respect. (ISO, n.d.). Soil quality standards 
are part of this category, which guide sustainable land use and soil management 
practices to protect and improve soil health, essential for agriculture, biodiversity, 
and carbon sequestration.  

An ISO standard is reviewed every 5 years. There are currently 234 soil quality 
standards, with 215 published and 19 ‘under development’; in other words, a draft is 
being reviewed by the committee to later replace other standards (ISO, n.d.).  

In general, ISO 9001:2015 standard is a globally recognized standard for quality 
management that contributes to SDG 1, 9, 12, and 14. This standard helps 
organizations and industries by defining how to establish, implement, maintain 
and improve a quality management system. ISO 9001:2015/Amd 1:2024 provide 
additional content to this standard, which will soon be replaced by ISO/CD 9001.  

Among the various very important standards of soil quality, most of them refer to 
methodologies for the evaluation of several soil quality indicators and properties, 
both at field and laboratory levels; even possible recording and monitoring of 
changes in dynamic soil properties, by ISO 23992:2022. Many of them are related to 
sampling, highlighting: 

• ISO 18400-301:2023 Part 301: Sampling and on site semi-quantitative 
determinations of volatile organic compounds in field investigations.  

• ISO 18400-206:2018 Part 206: Collection, handling and storage of soil under 
aerobic conditions for the assessment of microbiological processes, biomass 
and diversity in the laboratory. This standard contributes to the SDG 3, 13 and 
15. 

• ISO 18400-203:2018 Part 203: Investigation of potentially contaminated sites. 
This standard contributes to the SDG 3, 12, 13 and 15. 

• ISO 18400-104:2018 Part 104: Strategies; ISO 18400-205:2018 Part 205: 
Guidance on the procedure for investigation of natural, near natural and 
cultivated sites, and ISO 18400-202:2018 Part 202: Preliminary investigations. 
These standards contribute to the SDG 2, 3, 12, 13 and 15, and, together, are a 
new version and revise ISO 10381-4:2003. 

• ISO 18400-107:2017 Part 107: Recording and reporting. This standard 
contributes to the SDG 15. 

• ISO 18400-102:2017 Part 102: Selection and application of sampling 
techniques, previously ISO 10381-2:2002 and ISO 10381-6:2009. This standard 
contributes to the SDG 15. 

• ISO 18400-100:2017 Part 100: Guidance on the selection of sampling 
standards. This standard contributes to the SDG 15. 
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In relation to soil carbon content, ISO 23400:2021 provides the principles for the 
determination of the stocks of organic carbon and nitrogen in mineral soils at the 
field scale, as well as their variations, ISO 20951:2019 offers suggestions for the 
measurement of the fluxes of greenhouse gases (CO2, N2O, CH4) and ammonia 
(NH3) between soils and the atmosphere, ISO 17184:2014 determines carbon and 
nitrogen by near-infrared spectrometry (NIRS), ISO 16703:2004 and ISO 10693:1995 
determines carbonate and hydrocarbon in the range C10 to C40 by gas 
chromatography, respectively. Besides, ISO 16072:2002 establishes laboratory 
methods for determination of microbial soil respiration. Other standards such as 
ISO/AWI 21251 and ISO/CD 17505 will soon be published, which offer guidelines for 
determining the amount of organic carbon stored in soils based on their 
biogeochemical stability or residence time, as well as the temperature-dependent 
differentiation of total carbon (TOC400, ROC, TIC900) in soil and waste. On the other 
hand, there are also specific standards that guarantee the proper use of agricultural 
machinery and thus soil and environmental health, such as ISO 8947:1993, even 
others related to agricultural soil water management (e.g. ISO 16075-6:2023).  

Finally, it is important to note that there are also national organizations and 
standards equivalent to ISO. For example, UNE is the Spanish Standardization 
organization in ISO and others such as IEC, CEN, CENELEC, ETSI and COPANT. It 
establishes 135 current soil quality standards with international equivalences (UNE, 
n.d.). 

3.2.3 FROM SOIL QUALITY INDICATORS TO SOIL QUALITY INDEX 

Soil quality indices (SQI) have been defined as the ‘minimum set of parameters that, 
when interrelated, provide numerical data on the capacity of a soil to carry out one 
or more functions (Bastida et al., 2008). The different SQI are obtained by 
integrating into a formula different soil indicators that represent the set of soil 
properties relevant for SQ status. The development of effective, simple and reliable 
SQI must also allow for measuring the changes of SQ over time, in response to 
changes in land use, and to quantify the effects of agricultural management 
practices on SQ. 

Many of the soil quality indicators are closely related and provide redundant 
information. For simplicity and a better understanding and calculation, the number 
of indicators can be reduced by taking into consideration the correlation between 
them, making it important to select those indicators that are more appropriate for 
fulfilling the chosen soil function quantified by the SQI. This SQI should be selected 
with the minimum set of indicators (minimum data set or MDS) that, when 
integrated in a formula, provides numerical data on the capacity of a soil to carry 
out one or more functions (Acton & Padbury, 1994; Andrea et al., 2018; Raiesi, 2017; 
Thakur et al., 2022). 
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Different methods can be used to reduce their number in order to build a 
meaningful and easily understandable SQI: algorithmic, arithmetic or statistical 
methods such as Analysis of Variance (ANOVA) (D’Hose et al., 2014; Rinot et al., 2019), 
Principal Component Analysis (PCA) (de Andrade Barbosa et al., 2019; Mukherjee & 
Lal, 2014), Partial Least Squares-regression (PLS-R) and Partial Least Squares-
discriminate analysis (PLS-DA) (Paz-Kagan et al., 2014), Redundancy Analysis 
(RDA)(Costantini & Priori, 2023), Factor Analysis (Vasu et al., 2016) and expert opinion 
(EO) (Dal Ferro et al., 2018; Giannetti et al., 2009).  

Initially, MDS selections were based on expert opinions (J. W. Doran & Parkin, 1994). 
Subsequently, the reduction in the number of indicators was performed by 
multivariate techniques, with multiple regression and principal component 
analyses being the most widely used. Principal component analysis is a well-known 
procedure to lessen unnecessary data by correlating variables. With the above-
mentioned methods, the number of soil quality indicators is often reduced 
between 6 and 8. Andrews, Karlen, et al. (2002) concluded that both, the expert 
opinion and statistical methods are valid to select the minimum set of indicators 
while reducing their number. The main disadvantage of the statistical methods 
resides on the need for a wide set of data. 

After the selection, MDS indicators are applied a scoring function based on their 
actual effects on the accomplishment of the selected soil functions, where every 
indicator measurement is first interpreted and then converted to a value usually 
between 0 and 1 using standardized scoring functions (Andrews, Karlen, et al., 2002; 
I. Hussain et al., 1999). This scoring can be done by either linear or non-linear 
procedures (X. Li et al., 2019). Andrews, Karlen, et al. (2002) compared linear and non-
linear methods for scoring, and concluded that they do not differ much, but that 
the latter requires a deeper knowledge about each indicator. Nonetheless, they 
recommended non-linear methods, because they are often more representative of 
the complexity of the soil functions compared to the linear method for scoring. 
Thus, generally, non-linear scoring methods are preferred over linear scoring to 
represent this complexity. Assessments of soil quality indicators using standard 
non-linear scoring functions include i) more is better, ii) less is better, iii) optimum 
range, or iv) undesirable range (Karlen & Stott, 2015), with more is better and less is 
better being the most used in soil science, although a combination of them is 
frequently used depending on the soil quality indicator. 

Andrews, Karlen, et al. (2002) explain the shape of the curves used for scoring as 
follows: Some indicators follow typically a variation of a bell-shaped curve where the 
‘mid-point is the optimum’; a sigmoid curve with an upper asymptote for the 
scoring ‘more is better’, or a sigmoid curve having a lower asymptote for the ‘less is 
better’ function. The assignment of the curve can be determined according to 
agronomic and environmental function using literature review and by expert 
opinion. Unfortunately, as many authors underline, the shape of the curves and, 
therefore, the scoring of soil quality indicators, will always remain controversial 
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partly due to the lack of information, partly due to the conflictive curvilinear pattern 
of various indicators and partly because the use of expert opinion is controversial 
itself (Merrington et al., 2006).  

After the scoring of soil quality indicators by the chosen methods, additive and 
weighted additive SQI are built. In the simple additive index, the values (or ranges) 
of the soil quality indicators are scored and the SQI is the summation of each 
individual value (Amacher et al., 2007; Mukherjee & Lal, 2014). Nonetheless, if the 
evaluated soil functions differ significantly in importance, then a weighting of the 
soil indicators representing the desired soil functions is required. In fact, the first 
multiparametric SQI established by Karlen et al. (1994a) already weighted the 
selected soil indicators based on their role concerning the predefined goals 
defining SQ. This approach has been used to assess the impact of management 
practices for agricultural soils (I. Hussain et al., 1999; Lima et al., 2013) and for natural 
forests (Melo Filho et al., 2007). Although the systems based in Karlen and Stott 
(2015) have been widely adopted, weighting of the indicators is subjective and is 
not supported by any statistical method.  

Finally, the obtained SQI values from the equation in different soil conditions and/or 
over time are discussed and eventually validated against the perceived functioning 
of the natural ecosystem, while in agricultural soils, they are more often validated 
against yield data, and sometimes against Sustainable Yield Index (Askari et al., 
2015a; I. Hussain et al., 1999; S. Li et al., 2016; Mukherjee & Lal, 2014; Sharma et al., 
2005). Figure 2 summarizes the procedure followed to select the best SQI. 

Kuzyakov et al. (2020) propose an approach that would allow comparison of soil 
quality indices in different areas. The SQI-area approach is based on a comparison 
of the area within the radar plot produced from the group of individual soil 
parameters that have been selected to compose the SQI. Each individual soil 
parameter must be standardized to unity (1.0), using the base value of the indicator 
corresponding to an undegraded soil (in most cases a natural ancestor or analogue 
soil). This standardization guarantees, according to the authors, the comparison of 
any SQI with any number of parameters. From the standardized values, a radar 
diagram will be constructed for each soil so that the comparison of the areas 
covered by each soil will reflect the differences in quality.  
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Figure 3.2. Procedure to establish a Soil Quality Index. Based on Thakur et al. (2022) 
slightly modified 
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Efforts to apply satellite or airborne imaging spectroscopy to estimate SQI and crop 
productivity are emerging fields. Several studies have attempted to apply near-
infrared (NIR), mid-infrared (MIR), and vis-NIR spectroscopy to assess SQ in both 
field and laboratory settings because these methods are rapid, cost-effective, and 
nondestructive (Liu et al., 2020; Xia et al., 2018; Zornoza, Guerrero, et al., 2008). 

3.3 Common soil quantity indices 

An integrative soil quality index of worldwide use is often desired but, besides the 
difficulty inherent to its construction, its utility is dubious, since soil quality is often 
better evaluated for the accomplishment of specific soil functions that vary 
according to the type of soil (Simon et al., 2022). Therefore, there is no extensive SQI 
that can be accepted as a universal approach across scales and regions.  

Bastida et al. (2008) reviewed many different SQIs and developed an understanding 
of their advantages and disadvantages. The authors first distinguished between 
simple and multi-parametric SQI. They mentioned simple SQI such as the 
metabolic quotient (qCO2 respiration to microbial biomass ratio), the ratio between 
microbial biomass C to total organic C ratio, and enzymatic measurements that 
relate to microbial biomass. The authors acknowledged that, although a SQI based 
on one single parameter is easy to calculate they often lack information; a limitation 
not much improved by using two SQ indicators. A single indicator cannot 
encompass all soil functions of concern; therefore, multiple-soil attributes are 
usually required for SQ assessment. Thus, several multi-parametric indices have 
been developed to obtain SQ indices that provide and integrate more information 
on the quality of an agricultural soil and, in a less number, for non-agricultural soils. 
The first multi-parametric index for the quality of agricultural soil was established 
by Karlen et al. (1994a). This framework uses selected soil functions, which are 
weighted and integrated according to the following equation: 

 

SQI = qwe(wt) + qwt(wt) +qrd(wt) + qspg(wt) 

 

where: qwe is the rating for accommodating water entry; qwt is the rating for water 
transport and absorption; qrd is the rating for resisting degradation; qspg is the 
rating for supporting plant growth and wt is the numerical weight for each soil 
function.  

Glover et al. (2000) use the same SQI for apple production in conventional organic 
production, due to its flexibility, ease of use, and its potential for interactive use by 
apple producers. Their SQI uses the same soil functions, which are also weighted 
and integrated into a SQI equation.  
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Masto et al. (2007) developed this SQI a little more adding the soil functions (and 
their corresponding indicators) resistance to biochemical degradation, and the 
supply of plant nutrients and sustainability of crop productivity (in replacement of 
plant growth). The aim of their work was to evaluate and quantify the long-term 
effect of different fertilizers and farmyard manure treatments. 

Andrews, Karlen, et al. (2002) were the first to compare multi-parametric methods 
designed to establish the quality of agricultural soils. Their work can be considered 
the mathematical base that many authors have followed to establish SQI for 
agricultural ecosystems. The SQI proposed by Andrews, Mitchell, et al. (2002) is as 
follows:  

 

SQI = ∑ 0.61∙ SOMi + 0.61∙SEGi + 0.16∙SpHi + 0.16∙SWSAi + 0.15∙Szni + 0.09∙SBDi 

 

where S is the score for the subscripted variable and the coefficients are the 
weighting factors derived from the PCA. 

Even though SQI was proposed by Karlen et al. (1994b, 1994a) and Andrews, Karlen, 
et al. (2002); Andrews, Mitchell, et al. (2002) have been widely used, some authors 
have looked at other alternatives. Kang et al. (2005) used a trigonometric approach 
based on three subindices (nutritional, microbiological and crop-related) to 
establish a Sustainability Index. Koper & Piotrowska (2003) on their side, established 
a Biochemical Index of Soil Fertility to compare the effect of organic and mineral 
fertilization. This index classifies soil fertility in low, average, high and very high 
fertility categories. While physical and chemical indicators have been widely used 
to elaborate SQI, only a few of them have used enzymatic activity measurements 
despite the fact that enzymes are sensitive indicators of changes in soil In this 
regard, using various enzymatic activities, Puglisi et al. (2006) developed three 
indices of soil alteration to quantify soil deterioration caused by agricultural 
practices such as crop density and the use of organic fertilizers in different regions 
of Italy. 

The assessment of SQ is, of course, of similar if not higher importance in no 
agricultural soils, and a few SQI have been proposed with this aim. In this regard, 
Amacher and collaborators proposed a new SQI for assessing forest soil health 
(Amacher et al., 2007), and, as previously commented, Melo Filho et al. (2007) used 
the methodology proposed by Karlen et al. (1994a) to assess the impact of 
management practices in natural forests of Brazil. Considering the effects of soil 
management, Burger and Kelting (1999) elaborated a soil quality index specifically 
for pinewoods of the species Pinus taeda, using bulk density, water table depth, N 
mineralization, depth aeration and biological activity as suitable soil quality 
indicators, applying a method like that of Karlen et al. (1994a). Bastida et al. (2006), 
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for their part, used an approach based on Andrews, Karlen, et al. (2002) and 
established a Microbiological Degradation Index for natural soils in a semiarid 
climate. This index emphasizes the use of biochemical and carbon-related soil 
parameters in the establishment of the SQI, which aims to establish a threshold, 
below which policymakers should act to counter the negative effects that may lead 
to desertification in semiarid climates.  

3.3.1 TOOLS FOR SOIL QUALITY QUANTIFICATION 

Soil quality can be assessed using different approaches: through qualitative 
evaluation of soil indicators, usually done in the field, or performing analyses for 
quantitative measuring. Soil quality assessment tools are needed to quantify 
effectiveness of various management practices (Chang et al., 2022) and, for that 
purpose, soil characteristics are needed to evaluate soil quality, soil health and soil-
based ecosystem services (Cornu et al., 2023). In recent years, several authors have 
reviewed extensively soil quality and soil quality assessment (Bünemann et al., 2018; 
Rinot et al., 2019), differentiating between analytical assessments and in-field 
assessment approaches; in this section, we will review, in a synthetic way, tools, 
protocols and databases that could be useful for those who intend to perform an 
assessment of soil quality or health. The web addresses cited in this section were 
last visited on 19/06/2024. 

1. United States: 

o USDA NRCS Soil Health. This program focuses on promoting soil health 
through sustainable practices and monitoring soil conditions 
https://www.nrcs.usda.gov/conservation-basics/natural-resource-
concerns/soils/soil-health 

o USDA NCRS Soil Quality for Environmental Health, 
(http://soilquality.org/home.html) provides tools for soil quality 
assessment like  

1. Qualitative Scorecards 

2. Field test Kits, like Soil Quality Test Kit 
(http://soilquality.org/tools/test_kit.html) 

3. Lab-based assessment methods  

a) Soil Management Assessment Method (SMAF). 
http://soilquality.org/tools/smaf_intro.html  

b) Cornell Soil Health Assessment (Comprehensive 
Assessment of Soil Health (CASH)) 
https://soilhealth.cals.cornell.edu  

https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health
https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/soil-health
http://soilquality.org/home.html
http://soilquality.org/tools/test_kit.html
http://soilquality.org/tools/smaf_intro.html
https://soilhealth.cals.cornell.edu/
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c) SHAPE, builds upon conceptual frameworks established by 
the SMAF and CASH protocols. (Nunes et al., 2021) 

o USDA NRCS Web Soil Survey (WSS) provides soil data and information 
produced by the national Cooperative Soil Survey, useful to assess soil 
quality https://www.nrcs.usda.gov/resources/data-and-reports/web-soil-
survey  

o USDA-ARS Range Management Research Unit, Jornada Experimental 
Range: Land Potential Knowledge System. (Land PKS) It aims to support 
land managers with open-source tools that allow them to improve soil 
health and productivity. https://landpotential.org  

o Agroecosystem Performance Assessment Tool (AEPAT): a computer 
program used to evaluate the agronomic and environmental 
performance of management practices in long-term experiments 
(https://catalog.data.gov/dataset/agroecosystem-performance-
assessment-tool-f85eb)  

2. European Union: 

o European Soil Data Centre (ESDAC): Operated by the Joint Research 
Centre, ESDAC provides data and resources related to soil quality in 
Europe (https://esdac.jrc.ec.europa.eu).  

o LUCAS Soil Survey: The Land Use/Cover Area frame statistical Survey 
(LUCAS) includes soil sampling to monitor soil quality and health across 
Europe (https://esdac.jrc.ec.europa.eu/projects/lucas). 

o Interactive Soil Quality Assessment in Europe and China for Agricultural 
Productivity and Environmental Resilience (ISQAPER) aims to provide 
decision makers with science-based, easy to apply and cost-effective 
tools to manage soil quality and function. (https://www.isqaper-
project.eu/)  

3. France:  

o GiSSOL (https://www.gissol.fr/le-gis). French soil information system to 
meet the demands of public authorities and society as a whole. 

4. Ireland: 

o Soil Quality Assessment Research Project (SQUARE): Toolbox for 
farmenrs to assess soil structural quality. 
(https://www.teagasc.ie/environment/soil/research/square/) 

o Irish Soil Information System (http://gis.teagasc.ie/soils/)  

 

https://www.nrcs.usda.gov/resources/data-and-reports/web-soil-survey
https://www.nrcs.usda.gov/resources/data-and-reports/web-soil-survey
https://landpotential.org/
https://catalog.data.gov/dataset/agroecosystem-performance-assessment-tool-f85eb
https://catalog.data.gov/dataset/agroecosystem-performance-assessment-tool-f85eb
https://esdac.jrc.ec.europa.eu/
https://esdac.jrc.ec.europa.eu/projects/lucas
https://www.isqaper-project.eu/
https://www.isqaper-project.eu/
https://www.teagasc.ie/environment/soil/research/square/
http://gis.teagasc.ie/soils/
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5. Netherland:  

o National Soil Quality Monitoring Network 
(https://www.rivm.nl/en/node/39431) 

6. Canada: 

o Canadian Soil Information System (CanSIS): Managed by Agriculture and 
Agri-Food Canada, CanSIS provides soil data and maps for soil quality 
assessment (https://sis.agr.gc.ca/cansis). 

o National Soil Health Strategy aims to improve soil health, promote 
sustainable agricultural practices and ensure environmental resilience 
for Canada's future (https://soilcc.ca/soilchampions/national-soil-health-
strategy/).  

7. Australia: 

o Australian Collaborative Land Evaluation Program (ACLEP): This program 
provides national soil data and maps for monitoring soil quality 
(https://www.clw.csiro.au/aclep/). 

o National Soil Research, Development, and Extension Strategy: A 
collaborative effort to improve soil health and quality through research 
and monitoring (https://www.agriculture.gov.au/agriculture-land/farm-
food-drought/natural-resources/soils/national_soil_rd_and_e_strategy). 

o Soil Quality Initiative. It is the result of a collaboration between The 
University of Western Australia, Department of Agriculture and Food 
Western Australia, Grain Research and Development Corporation and 
South Coast Natural Resource Management. It aims to Establish 
benchmarked sites to identify and highlight the nature and extent of soil 
biological, chemical and physical constraints to production systems and 
to provide the basis of an ongoing soil quality monitoring and education 
program. https://www.soilquality.org.au/ 

8. India: 

o Soil Health Card Scheme: Launched by the Ministry of Agriculture, this 
program provides soil health cards to farmers, detailing soil quality and 
recommendations for improvement (https://soilhealth.dac.gov.in/home). 

9. Brazil: 

o Brazilian Soil Information System (SiBS): Managed by Embrapa, this 
system provides soil data and maps for monitoring soil quality 
(https://www.dpi.inpe.br/Ambdata/English/soil_map.php). 

https://www.rivm.nl/en/node/39431
https://sis.agr.gc.ca/cansis
https://soilcc.ca/soilchampions/national-soil-health-strategy/
https://soilcc.ca/soilchampions/national-soil-health-strategy/
https://www.clw.csiro.au/aclep/
https://www.agriculture.gov.au/agriculture-land/farm-food-drought/natural-resources/soils/national_soil_rd_and_e_strategy
https://www.agriculture.gov.au/agriculture-land/farm-food-drought/natural-resources/soils/national_soil_rd_and_e_strategy
https://www.soilquality.org.au/
https://soilhealth.dac.gov.in/home
https://www.dpi.inpe.br/Ambdata/English/soil_map.php
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o Brazilian Soil Spectral Service (BraSpecS http://besbbr.com.br). It can be 
used to predict soil attributes, such as soil texture, soil organic carbon 
content, and other soil quality indicators. 

10. United Kingdom: 

o National Soil Inventory (NSI): Managed by the Centre for Ecology & 
Hydrology (CEH), the NSI provides soil data for monitoring soil quality 
(https://www.landis.org.uk/).  

o Countryside Survey: Includes soil sampling to monitor changes in soil 
quality across the UK (https://www.ceh.ac.uk/data/monitoring-
programmes). 

11. New Zealand: 

o National Soils Database (NSD): Managed by Landcare Research, the NSD 
provides soil data for monitoring soil quality and health. 
(https://soils.landcareresearch.co.nz/tools/national-soils-database/nsd-
development/). 

o Soil Quality Monitoring Programme: Conducted by regional councils, this 
program monitors soil quality indicators on a regional basis 
(https://environment.govt.nz/assets/publications/Land-and-soil-
monitoring_A_guide_for_SoE-and-regional-council-reporting.PDF). 

12. South Africa: 

o South Africa National Land-Cover Datasets: Provides soil data and maps 
for monitoring soil quality. 
(https://egis.environment.gov.za/sa_national_land_cover_datasets). 

13. African Union: 

o African Fertilizer and Soil Health Action Plan 
(https://au.int/sites/default/files/newsevents/workingdocuments/43470-
wd-2._EN_Africa_Fertilizer_and_Soil_Health_Action_Plan_VI_170523.pdf).   

o Soil Information System for Africa (Soils4Africa). 
(https://www.isric.org/projects/soils4africa)  

14.Others: 

o Biofunctool: assesses in field, quickly and synthetically, the impact of 
agricultural practices on soil health with a multicriteria approach 
(https://www.biofunctool.com/the-concept) 

o Soil Navigator: A decision support system for assessing and optimizing 
soil functions. (http://www.soilnavigator.eu)   

http://besbbr.com.br/
https://www.landis.org.uk/
https://www.ceh.ac.uk/data/monitoring-programmes
https://www.ceh.ac.uk/data/monitoring-programmes
https://soils.landcareresearch.co.nz/tools/national-soils-database/nsd-development/
https://soils.landcareresearch.co.nz/tools/national-soils-database/nsd-development/
https://environment.govt.nz/assets/publications/Land-and-soil-monitoring_A_guide_for_SoE-and-regional-council-reporting.PDF
https://environment.govt.nz/assets/publications/Land-and-soil-monitoring_A_guide_for_SoE-and-regional-council-reporting.PDF
https://egis.environment.gov.za/sa_national_land_cover_datasets
https://au.int/sites/default/files/newsevents/workingdocuments/43470-wd-2._EN_Africa_Fertilizer_and_Soil_Health_Action_Plan_VI_170523.pdf
https://au.int/sites/default/files/newsevents/workingdocuments/43470-wd-2._EN_Africa_Fertilizer_and_Soil_Health_Action_Plan_VI_170523.pdf
https://www.isric.org/projects/soils4africa
https://www.biofunctool.com/the-concept
http://www.soilnavigator.eu/
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o Soil Health Calculator: https://github.com/jinshijian/SoilHealthCalculator 
(Jian et al., 2020) 

o Solvita Soil Health Test: https://solvita.com/soil/  

There is increasing interest in in-field assessment of soil quality. Field assessment 
generally does not involve special analyses, delivers immediate results, and can be 
easily performed by farmers, allowing self-checking and monitoring the condition 
of their soils and making management decision (Hughes et al., 2023).  Visual soil 
evaluation is the most common procedure for field soil quality assessment.  

In the last decades, different methods of visual evaluation of soil quality have been 
developed globally. Among the most widely used are the Visual Soil Assessment 
(VSA) (Shepherd et al., 2008), the Visual Evaluation of Soil Structure (VESS) (Ball et 
al., 2007; Guimarães et al., 2011), Visual Soil-Fast (McGarry, 2006), SOilPak (McKenzie, 
2001), the Muencheberg Soil Quality Rating (Mueller et al., 2014), and more recently, 
the Cropland In-Field Soil Health Assessment (USDA, 2020). (Reviews on visual soil 
assessment methods: Ball et al., 2017; Bünemann et al., 2018). 

All these methods visually assess parameters or indicators linked to soil quality, and 
some of them, such as the VSA method, also include plant quality indicators. 
Normally, only soil physical and biological properties are evaluated in field, although 
some methods, such as VS-FAST, also include measurement of some soil chemical 
properties (labile organic carbon or soil pH), using field-test kits (Bünemann et al., 
2018). In general, the indicators assessed are very similar across these methods. The 
most evaluated physical and biological properties are soil structure and 
consistency, soil porosity, soil color, soil texture, aggregate stability, soil mottles, 
water infiltration, presence of tillage pan, surface ponding, biological diversity 
(usually earthworms’ presence), root depth and rooting development, soil crusting 
and erosion. 

Each of the indicators is given a visual score, considering the criteria or the scoring 
system of the method where several levels or categories are established (for 
example, three score levels in VSA method: poor (0), medium (1) or good (2); or 5 
levels of soil structure in VSEE). Usually, the evaluation is made comparing the field 
sample with photographs or descriptions of the levels. Because some indicators 
can be relatively more important in the assessment of soil quality than others, the 
individual score values are usually weighted; VSA provides a x1, x2 or x3 factor 
depending of the relevance of the factor, and finally, an overall quality score or 
ranking is obtained, which indicates the state of the soil. There are available specific 
VSA guides for general land cover categories and for specific crops (Shepherd et al., 
2008). The “Cropland in-field soil health assessment method”, after the visual scores 
obtained informs of the risk of four main threats (compaction, soil organic matter 
depletion, soil organisms habitat loss or degradation and aggregate instability).   

https://github.com/jinshijian/SoilHealthCalculator
https://solvita.com/soil/
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Visual field assessment methods have been proven effective enough for 
discriminating soil quality across different soil types and land use and management 
practices, in different climates (Pulido Moncada et al., 2014) and are well-suited for 
monitoring changes in some soil indicators (Ball et al., 2017). Close relationships 
between visual soil evaluations and quantitative laboratory-based soil measures 
have been demonstrated (Emmet-Booth et al., 2016). In this sense, Ball et al. (2017), 
in a study about the application, limitations and opportunities of the main visual 
soil assessments methods, described research results that show a close relation 
between measured values of soil organic carbon (C) and scores of the VSA soil C 
index (Cloy et al., 2015), and a positive correlation between SOM and VSA scores 
(especially soil color scores) (Newell-Price et al., 2013), indicating the value of this 
visual techniques for estimating SOC. 

Field assessment of soil quality can particularly benefit from new technologies, 
including AI, through the development of interactive tools that can make the 
process easier, quicker, and more accurate. Some studies have explored the use of 
smartphones to predict or estimate soil properties. Many of these works are based 
on measuring color and analyzing images obtained with smartphone cameras to 
predict or estimate parameters such as SOM (Soil Organic Matter), SOC (Soil 
Organic Carbon), or iron content in the soil (Aitkenhead et al., 2020). In recent years, 
many mobile apps have been developed and made available in app stores for 
estimating different soil properties, although their true utility needs to be 
determined. Very recently, Sinclair et al. (Sinclair et al., 2024) conducted a study 
where they found a total of 337 apps for estimating soil properties, of which 32 were 
reviewed and analyzed using a rating scale that included 10 parameters 
(functionality, efficiency, quality, among others). One of the main conclusions of this 
study is the lack of functionality, of most of the apps evaluated, that they were 
unable to adequately identify color and quantify soil properties from captured 
images. In this study, the app LandPKS (https://www.landpotential.org/) stood out 
with the highest ratings, particularly in functionality. This app has a specific Soil 
Health module that allows users to track soil health of their land by visually 
estimating soil health indicators (according to the NRCS method of the USDA), in 
addition to entering basic soil data. Users are guided in the visual soil evaluation, 
and after introducing the scorings and some additional data, they can download 
their reports about their soil health. The iSQAPER app is a similar app developed by 
the EU Horizon-2020 project ‘Interactive Soil Quality Assessment in Europe and 
China for Agricultural Productivity and Environmental Resilience’ (iSQAPER, 
http://www.isqaper-project.eu/). This app, like LandPKS, guides the user in the 
visual determination of soil quality indicators. 

3.3.2 SQI FOR MEDITERRANEAN CLIMATE AREAS 

SQI tested in arid and semi-arid zones other than the Mediterranean areas are 
included here to expand our knowledge about their utility in the context of our 
project. In this sense, Sánchez-Navarro et al. (2015) state that the soil quality 

https://www.landpotential.org/
http://www.isqaper-project.eu/
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indicators and the resulting SQI must consider the specific ecosystem in which we 
operate and the soil functions we intend to preserve in general, but also those of 
special relevance to the experimental site. The chosen SQI must be adaptable to 
local or regional conditions and, therefore, the parameters needed to determine 
changes in soil quality, and then, the most suitable SQI, surely differ between a 
semi-arid wheat field in the Mediterranean and a rice paddy in tropical areas 
(Granatstein & Bezdicek, 1992; Jordán Vidal, 2023). 

Mediterranean soils, as their name implies, are formed in areas with a 
Mediterranean climate. The Mediterranean climate is characterized by well-defined 
seasons, with rainy winters and warm summers that are generally dry. In addition 
to the Mediterranean Sea environment, the Mediterranean climate includes areas 
such as California, central Chile, South Africa (Cape region) and Western Australia 
(Perth).  

Mediterranean soils can evolve rapidly and present different physical 
characteristics due to the occurrence of various processes. The first is the 
accumulation of organic matter, but processes of decarbonation, clay illuviation, 
rubefaction and pseudogleyzation also affect them (Torrent et al., 2023).  

However, inadequate land management can lead to a rapid loss of soil quality with 
a reduction in the abundance and diversity of soil microorganisms. In this sense, 
agricultural land management is one of the most important anthropogenic 
activities that alters soil characteristics, including physical, chemical and biological 
properties (Burton et al., 2022; Philippot et al., 2024; T. Yang et al., 2021). On the 
Mediterranean coast, the main soil threats are desertification, erosion and loss of 
organic matter. Although some soil properties cannot be easily modified (such as 
texture), soil quality can be improved by implementing good management and 
conservation strategies. Among these strategies, the use of temporary vegetative 
covers and the incorporation of compost have great potential for success, if applied 
carefully considering the crop’s water needs. These strategies provide various 
benefits to the agro-ecosystem, such as reducing erosion, accumulating organic 
matter in the soil, controlling weeds and pathogens and providing nutrients (Ding 
et al., 2021; Hallama et al., 2019; Kozacki et al., 2024; Martínez-Mena et al., 2020; 
Saquee et al., 2023). 

Improving soil quality usually takes many years (it depends on the climate, the soil 
type and the management, for example), however, cover crops slightly improve soil 
quality parameters already in the first years of cultivation (Sastre et al., 2018). Soil 
organic carbon concentrations increase over the years in conservation 
management soils (no tillage), especially in the upper layers (Tedone et al., 2023).  

Cover crops, especially green manures, affect the fungal composition of the soil, 
increasing the abundance of symbiotic soil fungi and decreasing the abundance of 
pathogenic fungi (Ding et al., 2021; R. Yang et al., 2023). Green manure cultivation 
(sole or intercropping) is an important agricultural practice that effectively 
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increases soil fertility, soil quality, and improves the ecological environment. Green 
manure can conserve water and soil, reducing disease occurrence (Campanella et 
al., 2020; Saquee et al., 2023) and improving subsequent crop yields (Amede et al., 
2021; Gao et al., 2024; Xu et al., 2023). 

Applying compost (including shredded pruning wood) to agricultural land is a 
reliable way of improving the physical properties of most soils, especially those with 
poor structure and low levels of organic matter. Changes in the physical properties 
of soils with compost include bulk density, infiltration rate, hydraulic conductivity, 
water content, aggregate stability and porosity. Compacted soils have a higher bulk 
density and, depending on the degree of compaction, can limit root growth and 
water infiltration (Moraes et al., 2020; Zhang et al., 2024). Soils managed with 
compost and cover crops tend to increase their water infiltration capacity (higher 
hydraulic conductivities) and modify their porosity distribution function, resulting 
in a greater number of larger pores, which favors rapid water circulation at depth 
and aeration of the profile (Blanco‐Canqui et al., 2022; Edwards et al., 2023). 

The long-term application of compost to the soil improves the physical and 
hydrological properties and fertility of the soil (Meena et al., 2020). The application 
of compost increases water retention and infiltration, enhances the release of 
nutrients for plant uptake and reduces leaching (Suvendran et al., 2024). It also 
increases soil organic matter and organic carbon content through carbon fixation 
by plants and microbial activity (Suvendran et al., 2024). The conservation approach 
offers certain advantages as a long-term approach to enhance crop productivity, 
soil quality, and environmental effects, therefore promoting more sustainable 
scenarios in agricultural systems.   

Andrews, Karlen, et al. (2002) describe nicely the management goals intended for 
vegetable production in Northern California and the soils functions supporting 
their achievements maintaining or improving soil fertility. In this sense, the authors 
selected crop productivity, water cycling and environment protections as the most 
significant goals that can be reached by selected physical, chemical and biological 
properties of the soils, namely their nutrient cycling, water availability, soil stability 
and support, filtering and buffering capacity, soil resistance and resilience and, 
finally, biodiversity abundance. This list of properties led to the elaboration of an 
easy SQI following the additive model based on 7 indicators: pH, mineralizable N (or 
alternatively microbial mass Carbon), aggregate stability, bulk density, available 
water capacity, electrical conductivity and Na absorption ratio, the last two of 
special interest in arid zones. 

Sánchez-Navarro et al. (2015) found out that different statistical analyses are useful 
for selecting the most appropriate indicators for Mediterranean semi-arid soils. The 
SQI based on the selected indicators explained about 80% of the accumulated 
variance, with porosity and water availability as the most sensitive physical 
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indicators for the ecosystems, while organic carbon and K+ contents were the most 
sensitive chemical indicators.  

Working with soils under semiarid conditions in Spain, Zornoza et al. (2007); 
Zornoza, Mataix-Solera, et al. (2008) established and tested two equations using 
multilinear regression systems focusing on evaluating the environmental quality of 
soils under natural vegetation. The first equation established a correlation between 
nitrogen and various enzyme activity and physico-chemical metrics, which applies 
to Mollisols. The second defined soil organic carbon using comparable indicators 
and is applicable to Entisols. 

More recently, Raiesi (2017) assessed long-term crop cultivation effects on soil 
quality index (SQI) in rangelands of western Iran and determined that organic 
carbon and salinity were the key indicators of soil changes in a region where long-
term cultivation has severely degraded SQ in native rangelands, limiting crop 
productivity to 52–64% of their potential capacity. 

In summary, the above information describes the different procedures that can be 
followed to measure SQ establishing SQI based on selected soil quality indicators 
in agricultural and no agricultural soils, focusing especially in Mediterranean and 
other arid and semi-arid zones of the planet.  As Bastida et al. (2008) state physical 
and chemical soil properties are more often included than biological parameters in 
the calculation of SQI, despite that biological changes can be more sensitive and 
precede perceived changes in SQ. Therefore, we suggest a more ample use of 
biological soil properties, especially of those more related with the capacity of the 
soil to function as a C sink and the management techniques improving them (S. Li 
et al., 2016). 
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4 SOIL CARBON SEQUESTRATION MODELS 

4.1 Introduction 

The complex array of living organisms known as soil organic matter (SOM) includes 
fungi, bacteria, and various phases of decomposition of plant and animal residue. It 
also includes humus, a stable substance that bears little resemblance to the 
organisms from which it is derived. SOM's composition is dominated by carbon (C), 
hydrogen, and oxygen, with minor amounts of nitrogen, phosphorus, and sulfur. 
This is because SOM originates from living tissues. The concentration of soil organic 
carbon (SOC) in grams per kilogram or mass per hectare (g/ha) to a specific depth 
expresses the levels of SOM. When net atmospheric CO2 removal is accomplished 
i.e. when C inputs (non-harvestable net primary productivity) exceed C outputs (soil 
respiration, C expenses associated with fossil fuels and fertilizers), carbon 
sequestration takes place in managed soils. An added benefit of soil C 
sequestration is that all of its methods adhere to sustainable agriculture principles 
(e.g., reduced tillage, erosion management, diversified cropping systems, 
enhanced soil fertility).  

More than ever, soil organic matter models are now utilized to extrapolate our 
knowledge of SOM dynamics over time and space, allowing us to evaluate C fluxes 
from entire regions or continents. Numerous research works have implemented 
techniques to evaluate SOM dynamics on a regional, national, and international 
level (Le Noë et al., 2023).  Policy makers at the national, regional, and international 
levels are increasingly using soil organic matter models, as seen in the post-Kyoto 
discussion over the terrestrial biosphere's capacity to store carbon. Our existing 
SOM models continue to encompass a range of theories and levels of 
understanding. Future advancements in SOM models will deepen our 
comprehension and enable the adoption of truly predictive models—one that does 
not require site-specific calibration. These advancements will lower the uncertainty 
surrounding SOM model predictions and enhance its estimations. 

4.2 Literature review on SOC modelling 

A thorough review of SOC modelling was carried out based on recent meta-analysis 
reviews, published in the relevant literature (De Rosa et al., 2024; Le Noë et al., 2023; 
Tadiello et al, 2023). Our understanding of the environmental and management 
controls of soil carbon sequestration in agricultural environments has improved as 
a result of the thorough descriptions of experimental data. The rate and extent of 
soil C sequestration are primarily determined by the amount and quality of C 
entering the soil and how that C interacts with the soil biophysical environment. It 
has been demonstrated that the amount of C that is incorporated into the soil 
through organic amendments, crop residues, and roots influences the course of 
SOC over time. It is almost certain that management techniques aimed at 
maximizing nutrient availability and establishing nutrient reserves—such as 
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fertilization and crop rotation with legumes—will increase soil C stocks. Crop 
residue quality and the time of its soil integration both affect the decomposition of 
carbon and, consequently, the storage of carbon in the soil. 

The extent of soil disturbance plays a significant role in controlling the 
decomposition and retention of C in soil by influencing soil aggregation. Given this, 
one of the most important technological advances of the past 30 years has been 
no-tillage agriculture, which enables farmers to raise crops profitably while 
lowering erosion and enhancing the quality and quantity of soil organic matter. 
Numerous models depicting the dynamics of SOC have been created since the 
early 1930s for a range of temporal and spatial scales, climatic conditions, land uses, 
and land cover. The SOC models that are more frequently seen in the literature are 
process-based, since they concentrate on the physical mechanisms that govern the 
movement and changes of biological matter. 

4.2.1 PROCESS-BASED MODELS 

Process-based models are based on conceptual SOC pools that decay following 
first order kinetics and consider biogeochemical processes that rely on 
mathematical-ecological theory. They have the ability to simulate SOC turnover 
and at some cases relate it to management practices. They are established at 
various temporal and spatial scales based on scenarios that characterize intra and 
inter-annual dynamics of SOC. Process-based models are multi-compartment 
models i.e. they partition the total SOC mass into specific pools. Early modelling 
approaches treated SOM as one homogeneous compartment, but with the 
perpetual increase in computational power, multi-compartment models are 
continuously being developed. Most of process-based SOM models currently found 
in the literature are multi-compartment models (Table 4.2).  

The position of each compartment in a model and its rate of decay define the 
compartment's characteristics. Decay rates are usually expressed by first-order 
kinetics with respect to the concentration (C) of the pool i.e. dC/dt = - kC, where t is 
the time. The rate constant k of first-order kinetics is related to the time required to 
reduce by half the concentration of the pool, without additional inputs. According 
to first-order kinetics, decay rates are closely associated with the SOC stocks of the 
several pools taken into account. Rate modifiers show that significant variables, 
such as soil temperature, soil moisture content, and clay content, affect microbial 
and physical processes. Two major categories of multi-compartment, process-
based models can be identified in the literature, based on the representation of 
SOC decomposition kinetics: 

1. Process-based models relying only on conceptual SOC pools, where SOC 
decaying usually follows first order kinetics. The majority of models 
appearing in Table 1, are first order models (e.g. RothC) 
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2. Process-based models combining microbial and physical processes 
controlling SOC decaying and stabilization by describing enzymatic 
reactions, diffusion and/or sorption kinetics (non-linear). The models that 
follow the non-linear SOC decay are marked with an asterisk in Table 1. In this 
category, non-linear kinetics consider the feedback between microbial 
activity and SOC substrates by representing the decay rate as a function of 
SOC and/or microbial C stocks (Georgiou et al., 2023; Wieder et al., 2013). 
Literature review has revealed that up until 2000 the appearance of non-
linear kinetics in SOC modelling was limited. One possible explanation for 
the recent rise in literature references of SOC models based on nonlinear 
kinetics is that these models enable us to consider the transient dynamics 
and feedback reactions of soil microorganisms to changing environments 
and SOC decomposition. Even though linear models don't always accurately 
depict these effects, their inherent stability and simplicity renders them as 
the preferred choice. The necessity to account for nonlinear effects in the 
context of climate change has increased the use of nonlinear models within 
the past ten years. Therefore, nonlinear models are still predominantly 
constructed exclusively for smaller scales, reflecting the geographical scales 
at which the necessary data are available. Furthermore, local-scale rather 
than global-scale data will be required for models to provide decision-
support to improve SOC sequestration at the plot or farm level.  

4.2.1.1 Rothamsted Carbon Model (RothC)  

In the category of first-order models, the Rothamsted Carbon Model (RothC) model 
is one of the most commonly used models in SOC modelling. RothC is a model of C 
dynamics in non-water-logged soils, initially developed to model C turnover in 
arable soils. It takes into consideration the effects of temperature, moisture content 
and soil type, using a monthly step for calculations. SOC is divided into five 
compartments or pools, depending on the rate of decomposition: inert organic 
matter (IOM), easily decomposable plant material (DPM), resistant plant material 
(RPM), microbial biomass (BIO) and humified organic matter (HUM). The IOM pool 
resists decomposition and does not receive C inputs. All compartments except IOM 
decompose following first-order processes. The model structure is displayed in 
Figure 4.1. 
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Figure 4.1. RothC model multi-department structure 

Carbon from incoming plant inputs is split between DPM and RPM, depending on 
the DPM/RPM (decomposability) ratio of the particular incoming plant material. For 
most agricultural crops, a DPM/RPM ratio of 1.44 is used i.e., 59% of the plant 
material is DPM and 41% is RPM. All incoming plant material enters these two 
compartments only once. Both DPM and RPM decompose to form CO2, BIO and 
HUM. The proportion that goes to CO2 and to BIO + HUM is determined by the clay 
content of the soil. The BIO + HUM is then split into 46% BIO and 54% HUM. BIO and 
HUM both decompose to form more CO2, BIO and HUM. Farmyard manure is 
assumed to be more decomposed than normal crop plant material. It is split in the 
following way: DPM 49%, RPM 49% and HUM 2%. 

RothC has been applied across several ecosystems, climate conditions, and land 
use (LU) classes using data from long-term experiments (Arnell et al., 2013; Liu et al., 
2011). Farina et al. (2013) modified the soil water dynamics for semi-arid regions, and 
Giongo et al. (2020) created a daily version and modified the soil water dynamics, 
for Caatinga shrublands, in the semiarid region, North-East Brazil. The data 
requirements for using RothC to generate simulations are listed in Table 4.1. 

 

Table 4.1. RothC data requirements 

 Input Data / parameters 

1 Monthly rainfall (mm). 

2 Monthly open pan evaporation (mm). Monthly potential evapotranspiration can 
be used divided by 0.75 

3 Average monthly mean air temperature (oC).  

4 Soil clay content (%).  

5 Decomposability of the incoming plant material i.e. DPM/RPM ratio. 
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6 Soil cover; specify the presence or absence of vegetation in the ground surface. 

7 Monthly input of plant residues (t C ha-1). Carbon that enters the soil per month (t 
C ha-1), including carbon released from roots during crop growth. 

8 Monthly input of farmyard manure (FYM) (t C ha-1), if any. FYM follows a different 
treatment from inputs of fresh plant residues. 

9 Depth of soil layer sampled (cm) 

 

A wide range of soil and climate attributes for which data are lacking can be filled 
in using predictive functions. PET can be estimated from simple models using 
temperature alone, models based on solar radiation, or “combined” models 
requiring an array of climate variables (Maas et al., 2023). Numerous environmental 
variables, including air temperature and humidity, precipitation, wind speed, and 
sun radiation, can be entered into PET computations.  

Additionally, proxy data such as field coverage by vegetation, and biomass or yield 
production, can be obtained by remote sensing (RS). This data can be used to 
calculate the amount of C that a system's roots and surface litter add to the soil – a 
critical component of RothC model. Despite their abundance, crop yield estimation 
models often capture only a specific crop type and cannot easily provide temporal-
continuous information for the entire agricultural production (Neumann et al., 
2018). The total assimilated C via photosynthesis is the Gross Primary Production 
(GPP). About half of GPP is soon released to the atmosphere via autotrophic 
respiration. The remaining part, the Net Primary Production (NPP), is allocated into 
compartments with a longer residence time such as leaves, roots or other 
structures. An EO-data model using satellite remote sensing information and 
capturing all land cover types worldwide is MOD17, which provides productivity 
information since the year 2000 at 1-km resolution (Zhao and Running, 2010).  

The wide acceptance and applicability of RothC as identified in the literature, is 
mostly related to the simplicity of the models’ conceptual design. In comparison, 
CENTURY has a broader modelling scope than RothC, including C, N, phosphorus 
and also sulfur dynamics. This results in a higher number of variables/parameters 
required for model formulation. The lower number of required input data makes 
RothC more easily applicable in the spatial context, with lower computational cost 
than CENTURY or even more complex models. However, because RothC fails to 
represent some biological processes, its simplicity comes with an associated cost. 
The RothC model was tested against measurements from 16 long-term 
experimental sites across global croplands more recently, using the model's 
original default parameters. The results indicated that the model performed 
generally well in representing the SOC dynamics under different conditions across 
multiple sites. (Wang et al., 2016). 
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Table 4.2. Multi-compartment, process-based SOC models (non-linear models 
designated with asterisk) 

1.  AMG Saffih-Hdadi, K. & Mary, B. Modeling consequences of straw residues 
export on soil organic carbon. Soil Biol. Biochem. 40, 594–607 (2008).  

2.  ANIMO  Rijtema, P.E.; Kroes, J.G. Some results of nitrogen simulations with the 
model ANIMO. Fert. Res. 1991, 27, 189–198. 

3.  APSIM  McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; 
Freebairn, D.M. APSIM: a novel software system for model 
development, model testing and simulation in agricultural systems 
research. Agr. Syst. 1996, 50, 255–271. 

4.   * 
BACWAVE
-WEB5 

Zelenev, V. V., van Bruggen, A. H. C., Leffelaar, P. A., Bloem, J. & 
Semenov, A. M. Oscillating dynamics of bacterial populations and their 
predators in response to fresh organic matter added to soil: The 
simulation model ‘BACWAVE-WEB’. Soil Biol. Biochem. 38, 1690–1711 
(2006).  

5.  Candy  Franko, U. Modelling approaches soil organic matter turnover within 
the CANDY system. In Evaluation of Soil Organic Matter Models Using 
Existing, Long-Term Datasets; NATO ASI I38; Powlson, D.S., Smith, P., 
Smith, J.U., Eds.; Springer-Verlag: Berlin, 1996; 247–254. 

6.  CASA-CNP Jian, J. et al. Leveraging observed soil heterotrophic respiration fluxes 
as a novel constraint on global‐scale models. Glob. Change Biol. 27, 
5392–5403 (2021). 

7.  CENTURY  Parton, W.J.; Stewart, J.W.B.; Cole, C.V. Dynamics of C, N, P, and S in 
grassland soils: a model. Biogeochem- istry 1987, 5, 109–131. 

8.  CIPM Kuka, K., Franko, U. & Rühlmann, J. Modelling the impact of pore space 
distribution on carbon turnover. Ecol. Model. 208, 295–306 (2007).  

9.  CN-SIM Petersen, B. M. et al. CN-SIM: a model for the turnover of soil organic 
matter. II. Short-term carbon and nitrogen development. Soil Biol. 
Biochem. 37,  375–393 (2005). 

10.   * CORPSE Jian, J. et al. Leveraging observed soil heterotrophic respiration fluxes 
as a novel constraint on global‐scale models. Glob. Change Biol. 27, 
5392–5403 (2021). 

11.  DAISY Laub, M. et al. DRIFTS band areas as measured pool size proxy to 
reduce parameter uncertainty in soil organic matter models. 
Biogeosciences 17, 1393–1413 (2020). 

12.  DNDC  Li, C.; Frolking, S.; Harriss, R. Modelling carbon biogeochemistry in 
agricultural soils. Global Biogeochem. Cycles 1994, 8, 237–254. 

13.  DSSAT Cycles 1994, 8, 237–254.  Hoogenboom, G.; Jones, J.W.; Hunt, L.A.; 
Thornton, P.K.; Tsuji, G.Y. An Integrated Decision Support System for 
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Crop Model Applications, Paper 94-3025, ASAE Meeting, Missouri, June 
1994; 23 pp. 

14.  D3R  Douglas, C.L., Jr.; Rickman, R.W. Estimating crop residue 
decomposition from air temperature, initial nitrogen content, and 
residue placement. Soil Sci. Soc. Am. J. 1992, 56, 272–278. 

15.   * Ecosys  Grant, R. Modeling transformations of soil organic carbon and nitrogen 
at differing scales of complexity. Modeling carbon and nitrogen 
dynamics for soil management (2001).  

16.  EPIC Williams, J.R. The erosion-productivity impact calculator (EPIC) model: 
a case history. Phil. Trans. Roy. Soc. Lond. B 1990, 329, 421–428. 

17.  FERT Lond. B 1990, 329, 421–428.  Kan, N.A.; Kan, E.E. Simulation model of soil 
fertility. Physiol. Biochem. Cultivated Plants 1991, 23, 3–16. 

18.  ForClim-D   Perruchoud, D.O. Modeling the Dynamic of Non-living Organic Carbon 
in a Changing Climate: A Case Study for Temperate Forests. Ph.D., 
Thesis, ETH Diss. No. 11900, 1996; 196 pp. 

19.  GENDEC  Moorhead, D.L.; Reynolds, J.F. A general model of litter decomposition 
in the northern Chihuahuan desert. Ecol. Model. 1991, 56, 197–219. 

20.  HPM/EFM Thornley, J.H.M.; Verberne, E.L.J. A model of nitrogen flows in grassland. 
Plant Cell Environ. 1989, 12, 863–886. 

21.  ICBM   Andrén, O.; Kätterer, T. ICBM—the introductory carbon balance model 
for exploration of soil carbon balances. Ecol. Appl. 1997, 7, 1226–1236. 

22.  KLIMAT- 
SOIL-
YIELD  

Sirotenko, O.D. The USSR climate–soil–yield simulation system. 
Meteorologia i Gidrologia 1991, 4, 67–73. 

23.  LPJ Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and 
terrestrial carbon cycling in the LPJ dynamic global vegetation model: 
LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 
(2003). 

24.  Humus 
balance  

 Schevtsova, L.K.; Mikhailov, B.G. Control of Soil Humus Balance Based 
on Statistical Analysis of Long-Term Field Experiments Database; VIUA: 
Moscow, 1992, (in Russian). 

25.   * MIMICS Wieder, W. R. et al. Explicitly representing soil microbial processes in 
Earth system models: Soil microbes in earth system models. Glob. 
Biogeochem. Cycles 29, 1782–1800 (2015).  

26.  MOMOS Pansu, M., Bottner, P., Sarmiento, L. & Metselaar, K. Comparison of five 
soil organic matter decomposition models using data from a 14 C and 
15 N labeling field experiment: Comparison of five soil organic matter 
models. Glob. Biogeochem. Cycles 18, n/a–n/a (2004).  
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27.  MOTOR  Whitmore, A.P.; Klein-Gunnewiek, H.; Crocker, G.J.; Klıŕ, J.; Körschens, M.; 
Poulton, P.R. Simulating trends in soil organic carbon in long-term 
experiments using the Verberne=MOTOR model. Geoderma 1997, 81, 
137–151. 

28.  N14CP-
Agri 

 16, Janes-Bassett, V., Davies, J., Rowe, E. C. & Tipping, E. Simulating 
long-term carbon nitrogen and phosphorus biogeochemical cycling in 
agricultural environments. Sci. Total Environ. 714, 136599 (2020). 

29.  NAM SOM    Ryzhova, I.M. Analysis of sensitivity of soil-vegetation systems to 
variations in carbon turnover parameters based on a mathematical 
model. Eurasian Soil Sci1993, 25, 43–50. 

30.  NCSOIL Molina, J.A.E.; Hadas, A.; Clapp, C.E. Computer simulation of nitrogen 
turnover in soil and priming effect. 

Soil Biol. Biochem. 1990, 22, 349–353. 

31.  NICCE Van Dam, D.; Van Breemen, N. NICCE—a model for cycling of nitrogen 
and carbon isotopes in coniferous forest ecosystems. Ecol. Model. 1995, 
79, 255–275. 

32.  O’Brien 
model   

 O’Brien, B.J. Soil organic carbon fluxes and turnover rates estimated 
from radiocarbon measurements. Soil Biol. Biochem. 1984, 16, 115–120. 

33.   
ORCHIDEE
-PRIM 

Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob. 
Change Biol. 24, 1873–1883 (2018). 

34.  Q-soil  Bosatta, E.; Ågren, G.I. Theoretical analyses of the interactions between 
inorganic nitrogen and soil organic matter. Eur. J. Soil Sci. 1995, 76, 109–
114. 

35.  PRIM Guenet, B., Moyano, F. E., Peylin, P., Ciais, P. & Janssens, I. A. Towards a 
representation of priming on soil carbon decomposition in the global 
land biosphere model ORCHIDEE (version 1.9.5.2). Geosci. Model Dev. 9, 
841–855 (2016).  

36.  RothC  Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klıŕ, J.; Körschens, 
M.; Poulton, P.R.; Richter, D.D. Simulating trends in soil organic carbon 
in long-term experiments using RothC-23.6. Geoderma 1997, 81, 29–44. 

37.  SOCRATES Grace, P.R.; Ladd, J.N. SOCRATES v2.00 User Manual; Co-operative 
Research Centre for Soil and Land Management: Glen Osmond, South 
Australia, 1995. 

38.   * SOMKO Gignoux, J. et al. Design and test of a generic cohort model of soil 
organic matter decomposition: the SOMKO model: SOMKO: a generic 
decomposition model. Glob. Ecol. Biogeogr. 10, 639–660 (2001).  

39.  SOMM Chertov, O.G.; Komarov, A.S. SOMM—a model of soil organic matter and 
nitrogen dynamics in terrestrial ecosystems. In Evaluation of Soil 
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Organic Matter Models Using Existing, Long-Term Datasets; Powlson, 
D.S., Smith, P., Smith, J.U., Eds.; NATO ASI I38; Springer- Verlag: Berlin, 
1996; 231–236. 

40.  Sundial Smith, J.U.; Bradbury, M.J.; Addiscott, T.M. SUNDIAL: simulation of 
nitrogen dynamics in arable land. A user-friendly, PC-based version of 
the Rothamsted nitrogen turnover model. Agron. J. 1996, 88, 38–43. 

41.  Verberne   Verberne, E.L.J.; Hassink, J.; de Willigen, P.; Groot, J.R.R.; van Veen, J.A. 
Modelling soil organic matter dynamics in different soils. Neth. J. Agric. 
Sci. 1990, 38, 221–238. 

42.  Yasso  24, Mao, Z. et al. Modeling soil organic carbon dynamics in temperate 
forests with Yasso07. Biogeosciences 16, 1955–1973 (2019). 

 

4.2.1.1 Process-based models’ validation 

Process-based models, particularly those that incorporate both physical and 
microbiological processes, tend to become more complex and incorporate an 
increasing number of bio-geochemical processes. However, including more 
processes or compartments in SOC models, over-fitting of the model parameters 
becomes possible and may lead to undesirable biases. Despite the numerous 
model applications found in literature, there seems to be no consensus on any 
approach for understanding and predicting SOC dynamics. As a consequence of 
the wide range of approaches, large disparities in predicted SOC values are 
observed among models, regardless of model category or temporal and spatial 
scales, suggesting the need for more thorough SOC model validation processes. 
The lack of standardization in the model validation criteria, further complicates the 
comparison of model performance. 

Validation of models is a critical step to improve confidence in SOC model 
predictions. In a comprehensive evaluation of SOM models, Izaurralde et al., 2001 
tested nine models against data sets from seven long-term experiments and the 
results showed that specific models – including RothC - had significantly lower 
overall errors [root mean square error (RMSE)], than other models. Wang et al. (2016) 
used data from 16 long-term experimental sites spread around the wheat-growing 
regions of the world to assess the model's efficiency in simulating fluctuations in 
soil C. According to the verified results, the model could fairly replicate the 
dynamics of soil organic matter across a broad spectrum of climatic and soil 
conditions as well as agricultural management practices. 

Typically, the more data that is gathered regarding SOC stocks and SOC 
compartments, bulk density in vertical SOC profile, moisture content, clay content, 
C inputs from plants, microbial biomass, etc., the more reliable the model outputs 
will be. Long-term field experiments, in particular, offer insightful empirical insights 
for assessing SOC models. The decadal field experiments, which are now in place 
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and offer long-term time-series data on SOC stocks under various climatic 
circumstances, constitute a useful source of data given the time and resources 
needed to build high value long-term data sets and monitoring networks. 

The diversity in SOC modelling approaches can be helpful in improving the 
prediction ability for SOC stocks. Model diversity is a fundamental characteristic in 
the case of multi-model ensemble approaches (Riggers et al., 2019; Farina et al., 
2021).  Implementing weighted averages and selecting models based on 
performance criteria can decrease prediction error and enhance the reliability of 
predictions, compared to simulations using a single model. Still, in multi-model 
ensemble approaches, standardizing approaches to modeling is a crucial problem; 
model inter-comparisons are challenging due to the selection of calibrating 
parameters, initialization strategies for different soil compartments, and forcing 
variable estimation. Nevertheless, multi-model ensembles appear promising, 
offering higher reliability than single models. 

4.2.2 STATISTICAL MODELS (DATA-DRIVEN) 

Despite the continuous development of process-based models, upscaling the 
results from such models is constrained by several factors, mainly because of the 
lack of spatial data at the required spatiotemporal resolution, particularly on soil 
properties. Alternatively, the digital soil mapping framework of the SCORPAN 
regression kriging approach has been used to model the spatial and temporal 
distribution of soil carbon at larger scales (Stockmann et al., 2015). Using this 
approach, a collection of global environmental covariates is assembled, selected to 
reflect a variety of soil-forming factors and soil-change drivers, including digital 
elevation models and their derivatives, climate data (long-term precipitation and 
temperature data), land-cover data and EO-data based biophysical indicators. Such 
environmental covariates or predictors, available over areas of interest can be used 
to generate spatial predictions of soil carbon, by modelling the relationship 
between target and auxiliary environmental variables. In a parallel manner, the 
research in digital soil mapping based on various machine and deep learning 
methods is ongoing. (Radočaj et al., 2024) Decision trees, such as Random Forest 
(RF), Gradient Boosting Machines (GBM), Cubist, and Quantile Random Forest 
(QRF), are the most prevalent machine learning methods used for total soil carbon 
prediction. Random Forest (RF) and Gradient Boosting Machines (GBM) are often 
used to construct ensemble decision trees. They combine several weak learners to 
generate a strong learner, which is a key component of the supervised learning 
strategy. (Radočaj et al., 2024).  

In statistical, data-driven spatio-temporal carbon modelling the crucial data 
besides the available spatial covariates are point observations – preferably repeated 
- with standardized measurements of SOC concentrations or stocks. De Rosa et al., 
2024 employed a data-driven spatial SOC changes modelling approach, utilizing 
SOC temporal change data obtained from the Land-Use/Land-Cover Area Frame-



   

 

 

 

 

 

76 

 

Survey (LUCAS) conducted across EU member states in 2009, 2015 and 2018. This 
novel approach provided for the first time an estimate of SOC changes at the 
European Level, using quantile generalized additive modelling (qGAM) and LUCAS 
revisited points. qGAMs are non-parametric regression models that demonstrate 
the capacity to capture the non-linear correlation between the response and 
explanatory variables using smooth effects. No previous hypotheses regarding the 
conditional distribution of the conditional response variable are necessary. This 
enhances the robustness of qGAMs when the variance of the response variable 
varies in relation to the explanatory variables.  

4.3 SOC modelling applications 

4.3.1 PROCESS-BASED MODELS 

The RothC carbon model was used to spatio-temporally simulate the soil C 
dynamics in croplands, for a time span of 10 years, during 2009-2018. The study area 
is in northern Greece, covering 140K ha of agricultural land with wheat, barley, 
maize and several other crops. The masking of the agricultural land cover was 
based on Copernicus Land Monitoring Service (ver.3). Land Cover Change Version 
3.0 product at 100 m resolution (Figure 4.2).  

The RothC model has been frequently and extensively implemented to simulate 
changes in soil carbon under a variety of soil-climate conditions and management 
practices in agricultural systems worldwide. These assessments typically rely on the 
consideration of relatively large areas as homogeneous in terms of the response of 
soils to land use change or to variation in climatic variables like temperature and 
precipitation. In the current approach, RothC application is spatially explicit, i.e. cell-
based to take advantage of EO-data and their spatial and temporal variability to 
spatio-temporally simulate the Soil-C dynamics in croplands. EO-data were 
assessed through GEE platform, and spatial modelling and processing was 
implemented in R computational environment. RothC modelling was 
implemented with a differential equations approach, using the package SoilR 
(Sierra et al., 2012).  
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Figure 4.2. Agricultural LC mask 

The application of RothC model was based on geographical data, mainly from 
public-access geospatial information concerning land cover, soil, climate, and 
productivity from both online and local sources: 

4.3.1.1 Land Cover data 

Copernicus Land Monitoring Service (ver.3). Land Cover Change Version 3.0 product 
at 100 m resolution. The Copernicus Global Land Service (CGLS) generates a series 
of qualified bio-geophysical products regularly, at global scales with medium to low 
spatial resolution (https://land.copernicus.eu/global/products/lc). Land cover from 
CGLS was used for the purpose of masking the area of interest to the agricultural 
land cover class. 

4.3.1.2 Soil data 

The Regional Soil Mapping survey, carried out during 2008-2009 was the source of 
available soil data, including 362 soil profiles with analytical data in several layers up 
to 1m (Figure 4.3). 

 

Figure 4.3. Soil profiles from 2008-2009 Regional Soil Mapping survey 

https://land.copernicus.eu/global/products/lc
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Spatial predictions from geostatistical models, build from the top layers of the 
distribution of soil profiles, concerning Soil bulk density, Clay Soil fraction and Initial 
Carbon concentration, were generated with a spatial resolution of 250m. The 
resulting distributions are displayed in Figure 4.4 and Table 4.3. RothC simulates 
carbon dynamics in terms of carbon density (ton C ha-1) which is referred commonly 
as carbon stock per area unit. Initial soil carbon concentrations SOC (%) are 
transformed into stocks SCD (t ha-1) using the formula 

 

SCD = SOC * BD * d * (1-(frag/100))  

 

Where BD = bulk density (g/cm3), d = soil depth (cm), frag = vol. of coarse 
fragments % 

 

Table 4.3. Input data statistics 

AOI: input statistics (n=22550) 

Variable units Min. 1st Qu. Median Mean 3rd Qu. Max. sd CV 

Soil bulk density  g/cm3  10.28  24.74  27.94  28.36  31.78  51.63  
5.36

7  
18.93  

Clay Soil fraction  %  22.45  29.61  31.07  31.15  32.7  41.23  2.351  7.547  

Initial Carbon Stock  t/ha  24.37  26.54  27.85  28.11  29.76  34  1.829  6.509  

 

 

 

Figure 4.4. Input data distributions 
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4.3.1.3 Climate data 

Climate Data Store - European Centre for Medium-Range Weather Forecasts 
(ECMWF) produces global data regarding the land component of  the European 
Re-Analysis (ERA5), referred to as ERA5-Land (https://developers.google.com/earth-
engine/datasets/catalog/ECMWF_ERA5..). Climatic data concerning temperature, 
precipitation, and evapotranspiration as monthly averages, were accessed in the 
form of time-series averages for the time period of 2009–2018. The resulting 
distributions are displayed in Figure 4.5. 

 

 

Figure 4.5. Climate data monthly distributions 

 

4.3.1.1 Productivity data 

Carbon inputs originate from crop residues, roots and manure (Wang et al., 2017). 
The latter is expressed in RothC as separate input (FYM) from residues and roots, 
and in absence of any relevant information is considered as zero input, allowing the 
use of EO-based productivity data for the estimation of C-input on a monthly basis.  

MODIS data allows estimation of plant productivity using the MOD17 algorithm 
(Zhao and Running, 2010), which uses biogeochemical principles on daily climate 
input, providing annual NPP and GPP (Net and Gross Primary Production). The 
yearly product at 500m resolution (https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_MOD17A3HGF) (Running S., Zhao M. 2021) was 
extracted for the decade of interest (2009-2018), resulting in the distribution 
displayed in Figure 4.6. NPP comprises all C allocated into plant compartments 
(above- or belowground, stem or leaves). Following the approach by Neumann M., 

https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD17A3HGF
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD17A3HGF
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2018, we considered three proportions of NPP: roots 22%, aboveground residues 
40% and harvested material 38%. 

 

Figure 4.6. MODIS NPP distributions (2009-2018) 

 

4.3.1.2 Model initialization 

RothC model uses five conceptual pools (Figure 1) for SOC modelling, including two 
litter-driven compartments (decomposable plant material, DPM, and resistant 
plant material, RPM) and three more pools, namely microbial biomass (BIO), 
humified organic matter (HUM) and inert organic matter (IOM). These carbon pools 
must be explicitly defined during model initialization, since they are purely 
conceptual, regardless the fact that they are difficult to quantify on regional to 
continental scales. As a solution the model could be run into equilibrium mode, 
matching a given SOC content, which is a time consuming and complex process, 
requiring additional data, such as historical climate data and uncertain information 
about the carbon input from plant residues and/or manure application. 
Weihermülleret al., 2013, developed pedotransfer functions (PTFs) based on soil 
organic carbon (SOC) and clay content data to predict all active carbon pools of the 
RothC model.  

 

RPM = (0.1847∙ SOC + 0.1555) ∙ (clay + 1.2750) −0.1158, 

HUM = (0.7148∙ SOC + 0.5069) ∙ (clay + 0.3421) 0.0184, 

BIO = (0.0140∙ SOC + 0.0075) ∙ (clay + 8.8473) 0.0567, 
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where SOC is expressed in t ha−1 and clay in % mass. Additionally, IOM that 
represents a small, stable, and biologically-inert fraction of soil carbon, was 
estimated by PTFs developed from long-term experiments by Falloon et al., 1998.  
The DPM fraction is subsequently estimated using the Falloon method  

 

IOM = 0.049 ∙ SOC1.139, 

DPM = SOC – IOM – RPM – HUM - BIO 

 

4.3.1.1 Results 

RothC simulation results reveal a general SOC increase over time in the study area 
with a mean value of 3.7 t C ha-1. Statistics for the resulting distribution are 
presented in Table 4.4. RothC simulation statistics. The final simulation result for 
the end of the time period of 2009-2018 is displayed in Figure 4.7. The quantified 
SOC stock changes also showed large spatial disparities across the study area, with 
the smallest increase and minor decrease appearing in specific regions in the 
eastern part of the area. These spatial patterns are directly related to the spatial 
heterogeneity of the NPP input data, that is characteristic and consistent 
throughout the entire decade 2009-2018 (Figure 4.8).  

 

Figure 4.7. RothC simulation of C-dynamics (2018) 
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Table 4.4. RothC simulation statistics 

 

 

 

 

Figure 4.8. MODIS Terra NPP: 2009 (top), 2018 (bottom) 

 

The temporal changes in SOC stocks are depicted in Figure 4.9, where the 
simulated distribution at the end of each year of the decade is displayed. The 
average annual SOC change during the decade was 0.343 t C ha-1 year-1 with a range 
0.11-0.6 and the smallest change occurring during 2011-2012, coinciding with the 
decade minimum of NPP distributions.  

AOI: RothC statistics (n=22550) – 2018 simulation 

variable  units  Min.  1st Qu.  Median  Mean  3rd Qu.  Max.  

ΔSOC t ha-1  -1.1560  2.9487 3.658  3.7142  4.4397  11.0913  
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Figure 4.9. Soil Carbon stock temporal change 

 

The quantified SOC stock changes were almost at an equal amount, positively 
correlated with Clay and negative correlated with initial carbon stock (SCD). The 
initial stock is one of the major controlling factors of SOC change. The results in 
Figure 4.10 suggest that soils with lower initial SOC concentrations might see larger 
SOC increase or lower soil C losses under otherwise comparable environmental and 
management conditions. Other researchers have similarly reported this inverse 
relationship between SOC change and initial SOC content (Wang et al., 2017; 
Tadiello et al., 2023).  
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Figure 4.10. Correlation matrix for soil data & resulting ΔSOC 

 

This negative relationship is further supported by the distribution of spatial 
patterns in the Initial SCD across the study area (Figure 4.11); soils with higher initial 
carbon stocks exhibit the lowest increase in   ΔSOC (Figure 4.6).  

 

Figure 4.11. Initial carbon stock 

 

Several authors have reported the positive effect of the clay percentage on SOC 
adsorption (Wang et al., 2017; Tadiello et al., 2023). This is related to the fact that clay 
soils exhibit strong aggregate formation and stability that prevents SOM 
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decomposition. The optimum balance of soil organic carbon (SOC) and clay must 
be meticulously determined to achieve its beneficial effect on SOC sequestration. 
Tadiello et al., (2023) reported a maximum SOC/clay index threshold of 3.2 for 
positive effect on sequestration. Although in our case the SOC/clay index seems in 
the optimal region (Figure 4.13), if soils with higher initial SOC contents also have 
higher clay fractions, this would overshadow the beneficial contributions of soil clay 
to soil C accumulation. This result is supported by the distribution of SCD:Clay ratio 
in Figure 4.9, which is very close to 1. 

4.3.2 STATISTICAL MODELS 

A statistical modelling approach was adopted, similar to De Rosa et al., (2024), in 
order to assess the change in SOC stocks in the same study area of northern Greece 
during the period 2009-2018. The initial model formulation focused on 10-year 
changes in SOC concentrations (ΔSOC), assessed by fitting a quantile generalized 
additive model (qGAM) (Fasiolo et al., 2021) using the mgcViz R package (Fasiolo et 
al., 2020) on the revisited points of LUCAS topsoil (0–20 cm) surveys of 2009 and 
2018. The trained model was then used for spatial predictions of ΔSOC. The 
response variable is the difference between SOC content from 2018 and 2009 
revisited LUCAS points. To exclude land use change as a driving force of SOC 
changes, we focused only on the LUCAS points that remained in agricultural land 
use and land cover during 2009-2018. The distributions of interest from the selected 
LUCAS points are displayed in  and Figure 4.12. 

 

 

Figure 4.12. Revisited LUCAS points (2009-2018) 
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Table 4.5. LUCAS data statistics 

 

  

 

Figure 4.13. LUCAS data distributions 

 

4.3.2.1 Predictors 

The WorldClim Bioclimatic variables (Hijmans et al., 2005) concerning temperature 
and precipitation were used as predictors in the modelling process, along with the 
clay content and the initial SOC content (2009), log-transformed due to skewed 
distribution (Figure 4.13). To produce data that is more biologically significant, the 
bioclimatic variables are used to represent seasonality (e.g., the annual range in 

AOI: input LUCAS statistics (n=102) 

variable  units  Min.  1st Qu.  Median  Mean  3rd Qu.  Max.  sd  CV  

ΔSOC g kg-1  -11.2  -1.075  0.6  0.9265  3.075  12.6  4.116  444.3  

SOC  g kg-1  3.4  8.6  11.35  13.65  16.08  52.7  8.023  58.8  

Clay Soil 
fraction  

%  4  18  24  26.89  38  54  12.31  45.79  
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temperature and precipitation) and annual trends (e.g., the mean annual 
temperature). 

The annual long-term mean precipitation (ann_P, mm) with precipitation 
seasonality (coefficient of variation, precCV), and the annual long-term 
temperature (mean annual temperature ann_T, °C) with temperature seasonality 
(standard deviation, tempSD), were extracted and included in the process 
(https://developers.google.com/earth-engine/datasets/catalog/WORLDCLIM). The 
final model included smooth effects from each of the two soil variables (log(SOC), 
Clay), and each of the four Bioclimatic variables, along with smooth nonlinear 
interactions of the soil variables, the temperature variables, and the precipitation 
variables, separately. Assessment of model performance was carried out using 
10fold cross-validation. Visual inspection of partial dependence (PD) plots was 
employed to evaluate the contribution of each variable included in the model's 
predictions. PD plots depict the effect of a single predictor variable on the predicted 
outcome, with all other variables held constant. For spatial prediction the trained 
model was used to generate ΔSOC predictions across the study area using spatially 
explicit covariates at a resolution of 250 m. The initial SOC in 2009 and soil clay 
content were adopted from the RothC modelling approach, while the Bioclimatic 
variables were downscaled from native ≈ 1km to 250m (bilinear interpolation). The 
distributions of the Bioclimatic predictors are presented in Table 4.6. 

 

Table 4.6. WorldClim data statistics 

AOI: input WClim statistics (n=22550) 

BioClim variable  unit  Min.  
1st 
Qu.  

Median  Mean  
3rd 
Qu.  

Max.  sd  CV  

Annual Precipitation  mm  728.1  784.9  830.3  822.1  855.8  949.9  43.54  5.296  

Precipitation 
seasonality (CV)  

%  54.01  65.26  68.29  67.62  70.61  73.1  3.629  5.367  

Annual Temperature  ℃ 10.4  16.62  17.26  16.9  17.73  18.11  1.137  6.725  

Temperature 
seasonality (SD)  

℃ 5.353  5.775  5.996  5.91  6.038  6.328  0.1848  3.127  

 

4.3.2.2 Results 

The revisited LUCAS points (Figure) showed ΔSOC to be extremely variable, ranging 
from -11 to 12 g C kg-1, with a median of 0.6 g C kg-1 for the whole decade 2009-2018. 

https://developers.google.com/earth-engine/datasets/catalog/WORLDCLIM
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The qGAM prediction was fairly accurate as depicted in the console output with the 
modeling summary results: 

summary(qfit) 

Family: elf  

Link function: identity  

Formula: 

DeltaSOC ~ s(log(SOC), k = 20) + s(Clay, k = 20) + s(ann_P) + s(precCV) + 

s(ann_T) + s(tempSD) + ti(log(SOC), Clay) +  

ti(ann_P, precCV) + ti(ann_T, tempSD) 

 

Parametric coefficients: 

            Estimate Std. Error z value Pr(>|z|)   

(Intercept)    2.646      1.274   2.077   0.0378 * 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Approximate significance of smooth terms: 

                     edf Ref.df  Chi.sq  p-value     

s(log(SOC))       16.129 17.194 195.286  < 2e-16 *** 

s(Clay)           12.954 14.703 100.359  < 2e-16 *** 

s(ann_P)           5.885  6.643  35.515 3.37e-06 *** 

s(precCV)          8.370  8.640 128.671  < 2e-16 *** 

s(ann_T)           3.070  3.618  24.861 4.73e-05 *** 

s(tempSD)          5.313  6.150  49.923  < 2e-16 *** 

ti(log(SOC),Clay) 11.707 12.476  74.716  < 2e-16 *** 

ti(ann_P,precCV)   4.190  5.062  25.867 7.71e-05 *** 

ti(ann_T,tempSD)   5.645  6.573   4.001    0.583     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.722   Deviance explained = 90.5% 

-REML = 328.91  Scale est. = 1         n = 102 

The model explained 90% of the initial variability in the LUCAS data (ΔSOC). All the 
involved smoothing terms proved significant, with the exception of the smooth 
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non-linear interaction between the temperature and its seasonality. The cross-
validation error was also computed in t ha-1: 

# 10fold cross-validation 

mean(cv.MSE$MSE) %>%  

  sqrt() 

[1] 1.12725 

Each of the involved modelling terms (smoothing effects) is displayed in Figure 4.14. 
The investigation of PD plot (Figure bottom) revealed the interactions between the 
modeled variables. Lower initial SOC content combined with low clay levels had an 
overall positive influence on ΔSOC, while increasing initial SOC content had a 
negative effect on ΔSOC, regardless of clay content. Additionally, high annual mean 
precipitation at low-to-medium levels of inter-annual variability had a positive 
effect on ΔSOC. In contrast, warm and semi-arid climatic conditions (i.e. 
Mediterranean climate) promoted SOC losses.  
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Figure 4.14. Main effect modelling terms (smooths) and non-linear interactions 

 

4.3.2.3 Spatial prediction 

Spatial prediction from the qGAM model was carried out in the study area, for the 
median quantile (q=0.5). The results are displayed in Figure 4.15.  
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Figure 4.15. qGAM spatial prediction 

 

Table 4.7. qGAM prediction statistics 

 

The soil bulk density, which was employed to convert SOC concentration to stocks, 
was estimated using an empirically developed pedotransfer function, adopted 
from Hollis et al. (2012). The qGAM spatial prediction results reveal a general SOC 
increase in the study area during the decade 2009-2018, with a mean value of 1.98 t 
ha-1. Statistics for the resulting distribution are presented in Table 4.7. The 
quantified SOC stock changes (Figure 4.15) also showed large spatial disparities 
across the study area, with the largest decrease appearing in a specific region in 
the western part of the area. These spatial patterns are controlled by the input 
LUCAS revisited dataset, whose input data on ΔSOC exhibits extreme variability (). 

4.3.3 COMPARISON OF MODELLING APPROACHES 

Although the two presented modelling approaches are fundamentally different, 
they are comparable since they both output soil carbon dynamics for the same 
time period and in the same units (t ha-1). Judging by the statistically described 
distributions of both modelling results in Table 4.8, there is higher degree of 
agreement in the upper tails, i.e., the maximum values of C-dynamics, indicating 
that the resulting maximum level of predicted carbon stocks is realistic enough 
with respect to the input LUCAS point observations. The distribution across the 
study area is significantly different between the two modelling results, especially 
towards the lower end, where the qGAM model trained with LUCAS data, exhibits 

AOI: qGAM statistics (n=22550) 

variable  units  Min.  1st Qu.  Median  Mean  3rd Qu.  Max.  

ΔSOC t ha-1  -11.633 -1.607 1.772 1.980 5.802 11.920 



   

 

 

 

 

 

92 

 

substantial stock losses locally in areas where the RothC model simulates steadily 
increasing carbon stocks. This result can be attributed to the inherent limitations 
of the RothC model; the possible leaching of organic matter is not considered, and 
the model lacks a management practices module, which is a feature of other 
models that can simulate the effects of fertilization, harvesting, irrigation, and 
erosion. Additionally, RothC does not consider additional water input types other 
than precipitation (i.e. water from irrigation). Water management during dry 
seasons can significantly impact SOC mineralization. The absence of these 
processes in the modeling framework is the current limitation of RothC and is the 
subject of several improvement efforts found in the literature (Farina et al., 2013; 
Hyun et al., 2024). 

 

Table 4.8. Summarized modelling results 
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5 CONSISTENT SOIL QUALITY RELATED DATABASES 
AND REFERENCES 

Assessment of soil quality according to observations-based inventory requires the 
selection of the appropriate indicators from existing soil databases. In most cases, 
the number of soil quality indicators that are assessed on a particular set of soil 
samples needs to be limited to a minimum dataset. (Bünemann et al., 2018). Initially, 
the selection of minimum datasets was determined by expert judgment. 
Multivariate strategies for statistical data reduction like principal component 
analysis (PCA), became increasingly used later on. Given the limitations of finances, 
time, and various other constraints, choosing a minimal dataset derived from a 
wider range of soil quality indicators is an essential step in soil quality assessments 
to prevent collinearity. Currently, EU-scale soil quality related databases, with 
publicly available data from in situ observations, include the following major 
sources: 

5.1 LUCAS soil observation data 

The soil assessment component of the periodic LUCAS Land Use/Land Cover Area 
Frame Survey was initiated in 2009 from the EU Commission (Toth G, Jones A, 
Montanarella L. 2013). In 25 Member States (excluding Bulgaria, Malta, Romania, 
and Cyprus), composite soil samples were collected and analyzed based on the 
physical and chemical properties of the topsoil at a depth of 0-20 cm. The scope of 
the LUCAS Soil Component was to establish a harmonized dataset of the main 
topsoil properties in the EU. In total, approximately 22,000 soil samples were 
analyzed for cation exchange capacity, percentage of coarse fragments, pH, 
carbonates, organic carbon, total nitrogen, phosphorous, extractable potassium, 
particle-size distribution, spectral properties and heavy metals. During 2015, 
repetitive soil sampling was carried out in the initial point locations of LUCAS 
2009/2012 to monitor the ongoing changes in physical and chemical topsoil 
parameters across the EU. Additionally, soil samples were collected in Bosnia-
Herzegovina, Albania, Croatia, Montenegro, North-Macedonia, Serbia and 
Switzerland. Throughout 2016 and 2017, more than 27.000 soil samples were 
collected, analyzed and added to the collection. Within the LUCAS framework a 
new soil sampling campaign was carried out in 2018, with soil samples collected in 
repeated points of LUCAS 2009, 2012 and 2015 (Orgiazzi et al., 2018). Several new 
physical, chemical, and biological characteristics were investigated, including 
important indicators for assessing the quality of the soil, such as the bulk density 
and the biodiversity of the soil. 

Due to the wide variety of soil properties considered, LUCAS Soil is one of the 
biggest and most complete, harmonized continental-scale soil databases in the 
world. Furthermore, it was designed as a scalable resource, allowing for the 
addition of new features and sample sites during subsequent sampling cycles. 
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Accessible to the scientific community and decision makers, data plays a crucial 
role in facilitating research and shaping the land-focused policy agenda. Moreover, 
the European Soil Data Centre (ESDAC) provides openly accessible data via this 
open-access service. (Panagos et al., 2012). 

5.2 WoSIS soil profile data 

The World Soil Information Service (WoSIS) provides standardized soil profile data 
to enable large-scale environmental applications and digital soil mapping. From 
the release of the first “WoSIS snapshot”, in July 2016, many new soil data were 
included, registered in the ISRIC data repository and subsequently standardized in 
compliance with the requirements of the data providers. Soil profile data managed 
in WoSIS were provided by numerous different data sources; consequently, 
particular focus was placed on measures for soil data quality and the 
standardization of soil property definitions, soil property values (and units of 
measurement) and soil analytical method descriptions. Several soil chemical and 
physical properties were taken into consideration. Additionally, for each soil profile 
the soil classification was also provided (FAO, WRB, USDA). Geographical data 
accuracy, along with the uncertainty of the analytical methods, are also available 
for further modelling assessments. The latest set of quality-assessed and 
standardized data is called “wosis_latest” and is accessible through OGC-compliant 
WFS services. The available snapshot (September 2019) includes 196498 geo-
referenced profiles originating from 173 countries. They describe more than 832 000 
soil horizons and 5.8 million records, under the framework of the Global Soil 
Information System (GloSIS) developed by the Global Soil Partnership (GSP). The 
current “WoSIS snapshot – September 2019” is available through public access at 
https://doi.org/10.17027/isric-wdcsoils.20190901 (Batjes et al., 2020). 

5.3 National data 

In Euro-MED area, many national approaches for the assessment of soil quality have 
been developed, relying entirely on the national-level soil mapping surveys that 
each country has carried out, collecting soil related information from in-situ 
observations. Each national repository has unique characteristics regarding 
sampling regime, analysis, metadata, soil depth profile, and there can be significant 
discrepancies between soil data across different databases, including 
methodology, purpose, and sampling strategies (spatial distribution & soil depth). 
A common bias in soil organic carbon measurements in many surveys is the 
overestimation of soil bulk density. Dry bulk density measurements are used for 
SOC density estimation from SOC concentration, but the main limitation of this 
approach at national scales is an over-estimation in bulk density measurements, 
due to up-scaling issues. Despite the lack of harmonization between national soil 
databases, they are recorded in Table 1 to assist future harmonization efforts similar 
to those from Uhran et al., 2021. 

Table 5.1. National/Regional level Soil-quality related databases 

https://doi.org/10.17027/isric-wdcsoils.20190901
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 EU_MED 
Country/level 

In-situ 
observations 

Analytical data 

1. Greece / national and 
regional level 

Augers, soil 
profiles  

Basic physical/chemical in augers with 
BD and fragments vol. additional in 
soil profiles 

2 North Macedonia / 
national and regional 
level 

Augers, soil 
profiles 

Basic physical/chemical parameters 

3 Slovenia/national  

regional level 

(currently available) 

Soil profiles 

 

Basic physical and chemical properties 
of soil profiles (pH, texture, Soil organic 
carbon, SOM, total N, C/N, 
exchangeable phosphorus and 
potassium, exchangeable cations.) 

 

4 Slovenia/national and 
regional level  

(in preparation larger 
soil database by KIS 
and also Ministry of 
Agriculture, Forestry 
and Food) 

Soil profiles 

Soil layers  

Basic physical and chemical properties 
of soil (pH, plant available phosphorus 
and potassium, total N, SOM, texture, 
cation exchange capacity, heavy 
metals, mineral oils, bulk density,…) 
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6 IMPACT OF AGRICULTURAL PRACTICES, SOIL 
IMPROVING CROPPING SYSTEMS, AND CLIMATE 
CRISIS ON CROP PRODUCTION AND CARBON 
SEQUESTRATION 

6.1 Introduction 

The agricultural yields of primary crops (wheat, rice, maize, and soybean) have risen 
significantly during the past decades, driven by escalating global food and feed 
demands and facilitated by technological advancements. Agriculture is essential 
for global food security, but conventional agricultural practices, marked by 
intensive monoculture, significant dependence on synthetic inputs, and extensive 
soil tillage, have led to various environmental issues, including soil degradation, 
biodiversity loss, and heightened greenhouse gas emissions. In recent years, 
sustainable agriculture practices have emerged as a viable alternative to traditional 
methods, prioritizing measures that improve environmental quality, conserve 
natural resources, and provide economic sustainability for farmers (FAO 2020). 

The significant potential of carbon sequestration in crops offers a feasible strategy 
for lowering atmospheric CO2 levels to mitigate climate change (Lal et al., 2016). 
This technique relies on cropping systems, which can be characterized as a 
framework for growers to follow in their crop production practices. An optimal 
farming system for carbon sequestration should generate and sustain a substantial 
quantity of biomass or organic carbon in the soil. Soil carbon sequestration is 
important for mitigating the effects of climate change and enhancing food 
security. 

Climate change related issues like rising temperatures and increasingly frequent 
extreme weather events provide significant risks to crop yields and global food 
security. The rise in atmospheric CO2 levels and anticipated climate change may 
affect global agriculture by altering plant growth and development, respiration, 
transpiration, and photosynthesis rates (Wang et al., 2010). Decreased soil fertility, 
deteriorating water quality, variations in groundwater levels, and increasing salinity 
in certain regions are now significant challenges for contemporary agriculture. A 
shortened growing season, water shortages, elevated temperatures, and heat 
stress during critical physiological stages of crops can lead to significant production 
reductions in arid and semi-arid regions globally (Rietra et al., 2022). 

6.2 Impact of agricultural practices 

The interactions between sustainable agricultural practices, crop yields, and soil 
carbon sequestration are complicated, with various factors affecting the results of 
these methods. Numerous studies (Blanco-Canqui et al., 2015; Pittelkow et al., 2015) 
indicate that the implementation of sustainable agricultural practices, including 
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crop rotation, cover cropping, and conservation tillage, can enhance crop yields 
through enhanced soil fertility, superior pest management, and more effective 
water utilization. The use of sustainable agriculture practices may occasionally lead 
to trade-offs between crop production and soil carbon sequestration. No-till 
farming can enhance carbon sequestration by minimizing erosion and preserving 
soil structure; nevertheless, it may result in diminished crop yields in certain 
contexts due to the slower mineralization of organic matter and decreased nutrient 
availability. Recognizing and resolving these trade-offs is crucial for the effective 
implementation of sustainable agricultural practices (Saliu et al, 2023). Recent 
advancements in agricultural technologies, including precision agriculture and 
remote sensing, have created novel possibilities for optimizing sustainable farming 
practices and improving their impact on crop yields and soil quality. Schut et al. 
(2018) observed that the combination of precision agricultural technologies with 
sustainable practices, including site-specific fertilizer management and variable-
rate irrigation, led to enhanced crop yields and reduced environmental impacts. 
Sustainable agriculture includes many farming strategies designed to improve the 
long-term production, resilience, and environmental sustainability of agro-
ecosystems. The fundamental principles of sustainable agriculture are rooted in 
agro-ecology, highlighting the significance of conserving biodiversity, fostering 
nutrient cycling, and strengthening the resilience of agro-ecosystems against 
climate change and other environmental challenges. Common agricultural 
practices for sustainable agriculture include (Saliu et al, 2023):  

Crop rotations 

This practice enhances soil fertility by inhibiting the accumulation of pests and 
pathogens, regulating nutrient cycling, and preserving soil structure. Numerous 
research experiments appearing in meta-analysis publications in literature (Rietra 
et al., 2022) have shown that crop rotation can augment crop yields by improving 
soil nutrient availability, diminishing insect pressure, and facilitating more efficient 
water utilization. Crop rotations, when combined with conservation tillage, 
sequester greater amounts of soil carbon sequestration than mono-cropping, as 
demonstrated by numerous researchers conducting various field tests across 
diverse climatic conditions (Poeplau et al., 2015). Crop rotations, while having a 
lesser impact on soil carbon than other practices, can influence soil carbon through 
enhanced biomass production and carbon inputs from various crops, as well as by 
modifying pest cycles, diversifying root structures, and altering rooting depth. 
Crops that produce high residues may sequester more carbon than those with little 
residue input. The intensification of cropping systems, including an increased 
frequency of crops per year, double cropping, and the incorporation of cover crops, 
can enhance soil carbon storage (Mandal et al., 2020).    

Cover cropping 

The practice refers to the cultivation of non-harvested plants during or between the 
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growth seasons of primary crops to provide multiple ecosystem services, including 
weed suppression, soil erosion mitigation, and nutrient cycling (Blanco-Canqui et 
al., 2015). Cover crops can improve soil health by increasing organic matter, 
enhancing soil structure, and fostering soil biodiversity. A meta-analysis by Wang 
et al. (2020) revealed that the use of cover crops significantly increased crop yields 
by an average of 14% and concurrently improved soil health metrics, including soil 
organic matter and nutrient availability. Cover crops can significantly increase soil 
organic matter by introducing fresh plant residues, promoting microbial 
breakdown, and improving soil carbon sequestration. The meta-analysis 
conducted by Poeplau and Don (2015) indicated that cover cropping significantly 
enhanced soil organic carbon stocks, with the most substantial gains occurring 
when cover crops were cultivated in mixtures rather than as monocultures. 

Conservation tillage 

This practice comprises a series of soil management techniques designed to 
minimize soil disturbance and preserve soil cover, hence reducing soil erosion, 
sustaining soil structure, and improving water infiltration. Conservation tillage 
strategies encompass no-till, reduced tillage, and strip tillage (Kassam et al., 2019). 
Research indicates that conservation tillage enhances soil health by augmenting 
soil organic matter, fostering soil biodiversity, and diminishing soil compaction 
(Blanco-Canqui et al., 2015). The effect of conservation tillage on crop yields is 
context-dependent, with certain studies indicating yield increases and others 
indicating reductions (Blanco-Canqui et al., 2015; Pittelkow et al., 2015). The 
advantages of conservation tillage in reducing runoff and soil erosion are well 
recognized and when utilized alongside crop residues and cover crops, 
conservation tillage enhances soil structure and increases the soil organic carbon 
pool. The advantages of conservation tillage in carbon sequestration arise from 
both the enhancement of soil organic carbon (SOC) content and the reduction of 
CO2 emissions associated with plowing, as well as decreased fuel consumption. 
Reportedly, the effect of conservation tillage on soil organic carbon sequestration 
may be more pronounced in degraded soils compared to fertile soils (Mandal et al., 
2020).  

Organic farming 

Organic farming practices are an agricultural approach that utilizes natural 
processes and inputs, including compost, manure, and biological pest control, to 
improve soil fertility and manage pests, as opposed to synthetic fertilizers and 
pesticides (Mandal et al., 2020). Organic farming generally produces lower crop 
yields compared to conventional farming because of the diminished utilization of 
synthetic inputs. Nevertheless, certain studies indicate that organic systems can 
attain yields comparable to conventional methods under specific circumstances, 
especially when integrated with other sustainable agricultural practices or 
cultivated in soils rich in organic matter. A meta-analysis study (Seufert et al., 2012) 
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revealed that organic yields were, on average, 19-25% inferior to conventional yields; 
however, the yield gap dropped to 9% under ideal conditions. Organic farming can 
improve soil organic matter by integrating organic materials, such as compost and 
animal dung, into the soil and fostering soil microbial activity. Gattinger et al. (2012) 
conducted a meta-analysis study revealing that organic farming enhanced soil 
organic carbon stocks by an average of 18% relative to conventional farming, with 
the most significant increases noted in systems characterized by high organic 
input rates. 

Agroforestry 

Agroforestry is a land-use strategy that combines trees with crops and/or livestock 
to develop multifunctional landscapes. These practices can improve soil health by 
increasing soil organic matter, enhancing nutrient cycling, and fostering soil 
biodiversity (Mandal et al., 2020). Agroforestry systems offer several ecological 
services, including carbon sequestration, microclimate regulation, and habitat 
supply for pollinators and other beneficial species. Numerous studies have shown 
that agroforestry can augment agricultural yields by raising nutrient availability, 
improving water use efficiency, and offering shade and wind protection (Smith et 
al., 2012; Coe et al., 2014). 

6.3 Impact of Soil Improving Cropping Systems 

The concept of 'cropping systems' represents the crop variety, crop rotation, and 
agronomic management practices employed in a specific field over several years. 
Decisions on these factors can affect both the viability and sustainability of 
agricultural production. These systems are defined as soil-improving if they lead to 
a sustained enhancement of the soil's capacity to perform its functions, particularly 
food and biomass production, buffering and filtering capacities, and the 
maintenance of additional ecosystem services (Hessel et al., 2022). Soil Improving 
Cropping Systems (SICS) can adopt and combine several management approaches 
like crop rotation, inter-cropping, and cover crops between growing seasons, crop-
residue management, manure application, reduced tillage or no-tillage, N-
fertilization with straw/stalk and more. A thorough literature review revealed the 
reported results from several meta-analysis studies on SICS evaluation, mainly with 
the use of data from long-term experiments (LTEs) across EU and worldwide, 
emphasizing the advantages as well as the challenges of SICS adoption in the long-
term i.e. decade-long application or more.    

The results from LTEs and meta-analysis studies (Rietra et al., 2022; Poeplau et al., 
2015) indicated a slight beneficial effect of SICS on the environment, including soil 
quality, no influence on sustainability, and a minor negative impact on economics 
and the sociocultural dimension. Certain treatments exhibited both elevated and 
diminished impact scores across the parameters of the sustainability assessment, 
highlighting the trade-offs in the effectiveness of a SICS. Certain treatments 
resulted in either negligible or adverse effects (e.g., early wheat sowing), while other 
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treatments had favorable impact ratings across all dimensions (e.g., nitrogen 
fertilization with straw/stalk). SICS possess the capacity to lower long-term 
expenses by minimizing dependence on costly external inputs like fertilizers and 
pesticides, decreasing energy consumption for machinery operation, and/or 
limiting labor requirements. Even though certain SICS can result in lower 
productivity i.e. crop yield, they might use inputs more efficiently because of their 
increased efficiency (Hessel et al., 2022).  

The significant potential of carbon sequestration in agricultural land offers a 
feasible strategy for reducing atmospheric CO2 levels to mitigate climate change. 
This technique relies on SICS as operational frameworks for growers to adhere to in 
their crop production practices. An optimal farming system for carbon 
sequestration should generate and sustain a substantial quantity of biomass or 
organic carbon in the soil. The concentration of organic carbon in the surface soil 
(0-15 cm) mostly relies on the total input of crop residues either left on the surface 
or integrated into the soil. Removing crop residues from the soil significantly 
reduces soil carbon levels. Consequently, enhancing carbon sequestration 
necessitates an increase of plant biomass residue input (Wang et al., 2010). Biomass 
accumulation can be increased through higher cultivation intensity, the cultivation 
of cover crops during inter-cropping seasons, the reduction of land fallow periods, 
crop rotations, and inter-cropping systems. The return of biomass to the soil can be 
enhanced by eliminating summer or winter fallow and maintaining a dense 
vegetative cover on the soil surface, which also mitigates soil erosion and prevents 
soil organic carbon loss. Insights concerning results from individual or combined 
SICS applications through LTEs are summarized below. 

Crop rotation 

The impacts of crop rotation, inter-cropping, and cover crops on crop productivity, 
soil quality, and the environment were generally favorable in nearly all studies 
(Rietra et al., 2022). The results are dependent upon the nitrogen fertilization rate: 
yield benefits are maximized during low nitrogen fertilization. The parallel 
cultivation of multiple crop species inside a single field for certain parts of the 
growing season (inter-cropping) positively influences crop output; however, the 
magnitude of this effect is highly dependent upon the specific crop varieties and 
inter-cropping configurations employed. Implementing cover or catch crops 
following the primary crop mitigates soil erosion and nitrate leaching while 
enhancing soil carbon sequestration.  

Further results indicate that poor crop rotation will eventually lead to a decline in 
soil productivity and biomass production, resulting from an increase in infestations 
from weeds, diseases, and insects (Wang et al., 2010). Enhancing cropping intensity 
by minimizing the duration of bare land fallow during crop rotation is an efficient 
strategy to augment biomass output and soil carbon sequestration. Furthermore, 
higher cropping intensity can reduce the rate of organic matter decomposition and 



   

 

 

 

 

 

105 

 

the mineralization-oxidation of SOC. Similarly, cover cropping systems offer an 
effective approach to enhance carbon sequestration for climate change mitigation 
(Baartman et al., 2022). Meta-analysis studies (Rietra et al., 2022; Poeplau et al., 2015) 
highlight the fact that soil organic carbon sequestration rates seen in most global 
cover crop studies are comparable to those associated with other organic-input-
related carbon sequestration management strategies in agricultural soils and are 
nearly as effective as land-use changes such as the afforestation of croplands. 
Carbon sequestration could continue for many decades, but approximately 50% of 
the overall impact on soil organic carbon stores is anticipated to take place over the 
initial twenty years. This strong sequestration rate, along with the extensive 
geographical availability of possible cultivation sites, supports the belief that cover 
crop cultivation is a sustainable and effective strategy for mitigating climate 
change. Furthermore, cover crops can mitigate nutrient leaching and improve 
nutrient efficiency, decrease wind and water erosion, and assist with pest 
management, rendering cover crops environmentally beneficial and economically 
sustainable in the long term.  

Tillage 

Tillage directly affects soil carbon content. Tillage may have both beneficial and 
harmful effects on the soil C pool. The negative impacts of tillage include erosion, 
leaching, and mineralization, whilst the beneficial effects involve the humification 
of plant residues, mineral aggregation, organic compound synthesis, and the deep 
deposition of carbon in soil horizons. Conservation tillage is a broad concept that 
seeks to preserve moisture and minimize runoff losses. Conservation tillage may 
include no-tillage, reduced tillage, ridge tillage, and mulch tillage. All these tillage 
approaches adhere to three fundamental principles: i) minimal soil disturbance, ii) 
retention of crop residues on the soil surface, and iii) no or minimal traffic on the 
agricultural land (Busari et al. 2015).  

Meta-analysis studies have shown that conservation tillage, including no-tillage or 
reduced tillage, often leads to decreased crop yields, increased soil organic carbon 
(SOC) contents in the topsoil, higher soil biodiversity and increased abundance of 
soil organisms, compared to conventional tillage. However, it also results in greater 
emissions of nitrous oxide (N2O), and the extent of these effects vary with climate 
conditions (Hessel et al., 2022). The yield penalties associated with no-tillage are 
closely related to crop residue return and crop rotation and tend to be more 
significant in tropical regions compared to temperate regions. Notably, these 
penalties diminish with the prolonged use of no-tillage practices.  Although no-
tillage typically incurs lower production costs than conventional tillage, the 
additional carbon sequestration it provides is minor and highly variable, leading to 
fluctuations in the net economic benefits (Hessel et al., 2022).. Long-term 
experiments (LTEs) have demonstrated that combining conservation tillage with 
crop residue significantly enhances carbon sequestration compared to 
conservation tillage alone. To maximize soil carbon sequestration, larger quantities 
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of plant residues must be returned to the soil while keeping soil disturbance to a 
minimal (Wang et al., 2010).  

Crop residue 

In conservation agriculture, crop residues are returned to the soil to improve soil 
quality and reduce soil erosion, often in conjunction with zero-tillage or reduced-
tillage practices. LTEs have shown that crop residue management and mulching 
lead to increased crop yields, with improvements in water and nitrogen usage 
efficiency. By reducing soil evaporation, mulching allows more water to be available 
for crops, leading to higher yields (Rietra et al., 2022).  

Results from LTEs across the European Union (EU), have demonstrated that 
incorporating agricultural residues into the soil or applying farmyard manure 
significantly improves soil structure, including water-stable aggregates and bulk 
density. However, soil organic carbon content and plant-available water content 
did not show substantial increases despite these beneficial effects on yield and soil 
structure (Hessel et al., 2022). Other LTEs (Poeplau et al., 2015) found that manure 
application mitigated the yield gap between organic farming and conventional 
treatments using mineral fertilizers, while also decreasing soil bulk density. Studies 
examining sustainable intensification cropping systems (SICS) with varied crop 
residue management showed that returning crop residues reduced the need of 
fertilizers. Overall, crop residue return has a positive impact on soil carbon 
sequestration and soil microbial activity, although it is associated with increased 
N2O emissions (Rietra et al., 2022). Conservation agriculture, which integrates crop 
residue mulching and no-till, can increase soil organic carbon  by conserving water, 
minimizing soil erosion, improving soil structure, and lowering atmospheric CO2 
enrichment levels (Rietra et al., 2022). Ridge tillage, when combined with fertilizers 
and crop residues, have also proven effective in sequestering soil organic carbon 
particularly through erosion control (Baartman et al. 2022). 

6.4 Impact of climate crisis 

The climate crisis, coupled with extreme weather events, poses significant risks to 
global crop yields and their stability globally (Reyes et al., 2021). The four primary 
climatic factors influencing crop productivity are rising atmospheric temperatures 
in the atmosphere, changes in precipitation patterns, increased CO2 concentration, 
and rising tropospheric ozone (O3) levels (Lobell and Gourdji 2012). 

Global temperatures are increasing at a rate of approximately 0.3 °C for maximum 
temperatures and 0.2 °C for minimum temperatures per decade. Higher 
temperatures are likely due to an increased occurrence of heat events and a 
reduced frequency of cold events, both of which affect crop growth and quality. 
Projections indicate that global temperatures will rise by 1 °C within the next 
decade, with agricultural regions experiencing an even greater increase due to 
faster warming of terrestrial areas compared to oceans (Tariq et al., 2020). 
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Temperature directly impacts crop development and yield through its effects on 
photosynthesis, water use, crop duration, and susceptibility to physical damage 
and pest infestations (Lobell and Gourdji 2012). Precipitation variability also 
significantly influences crop yield by affecting soil moisture, which is crucial for crop 
growth. Southern Europe (Tariq et al., 2020) is expected to experience more severe 
droughts, leading to higher water stress for crops. Drought conditions promt plants 
to close their stomata, which limits carbon uptake and exacerbates heat stress, 
further reducing crop growth and yield. Conversely, increased precipitation can 
lead to flooding and waterlogging, which damage crops and reduce soil fertility 
(Hatfield et al. 2011). Temperature dynamics under climatic change involve more 
extreme heat events, which are harmful to crops, and fewer cold waves (Tariq et al., 
2020).. Crops vulnerable to high temperatures will become increasingly susceptible 
to heat waves, resulting in earlier senescence, shorter grain-filling periods, impaired 
leaf water relations, and photosynthetic suppression (Asseng et al. 2015).   

Since the industrial revolution, atmospheric CO2 concentrations have risen by 46.5% 
from 278 ppm to 407.4 ppm in 2018, with an average annual increase of 2 ppm in 
the 2000s (Lobell and Gourdji 2012). CO2 levels are projected to reach 500 ppm by 
the mid-21st century (IPCC 2001). The global increase in CO2 levels mitigates some 
of the negative effects of rising temperatures and intensifying droughts, enhancing 
global crop yields by approximately 1.8% per decade. However, temperature 
increases are expected to reduce crop yields by around 1.5% per decade (Tariq et al., 
2020). The interaction between higher  CO2 levels and rising temperatures present 
both opportunities and challenges for crop productivity, with CO2 boosting 
photosynthesis and growth, but potentially failing to offset yield losses caused by 
heat stresses (Chavan et al., 2019).  

Air pollution from sources like nitrogen oxides, carbon monoxide, and methane has 
led to rising tropospheric ozone (O3) levels, which increased from 10–15 ppm in the 
preindustrial era to over 35 ppm due to elevated industrial emissions. Future O3 
levels remain uncertain due to gaps in understating O3 emission mechanisms and 
pollutant control strategies (Tariq et al., 2020). Effects of climatic change on crop 
production are complex, with interactions between temperature, CO2, and O3 
making it difficult to predict the net impact of these variables (Sangeetha et al. 
2018).  

Soil carbon sequestration offers a potential strategy for mitigating the adverse 
impacts of climate change on food security (Lal 2016). Climate-induced changes in 
temperature and precipitation affect the decomposition rates of SOC and the 
balance between storage and release. Soil organic carbon stock commonly 
increases as global temperatures decline. Cold and humid regions exhibit elevated 
soil carbon content in contrast to semiarid and arid climates. The climate and the 
type of organic matter added to the soil are significant factors affecting CO2 output. 
Elevated temperatures result in increased CO2 output from the soil. As global 
temperatures rise, decomposition accelerates, reducing the retention time of 
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carbon in the soil (Hammad et al. 2020). This suggests that soils could become a 
significant source of CO2 emissions in the future. Soil organic matter originates from 
the decomposition of plant and animal wastes and the ongoing degradation of 
these plant components yields more stable forms known as humus. Typically, 
humus can persist in the soil for approximately 27 years. It is now widely recognized 
that the decomposition of soil organic matter is an ecosystem characteristic rather 
than simply a compositional attribute (Schmidt et al. 2015). The decomposition of 
organic molecules in an ecosystem is conditional to environmental and biological 
factors. The decomposition process impacts soil biodiversity. An accelerated 
breakdown process in soil promotes the accumulation of microbial communities. 
Factors like moisture, temperature, material decomposition, and microbial 
community structure influence the residence period of the introduced carbon 
source in the soil. Consequently, understanding these dynamics is crucial for 
effective soil carbon management (Schmidt et al. 2015). 
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7 CONCLUSIONS 
Soil quality monitoring in Euro-MED region is essential to effectively manage 
agricultural systems and improve productivity without causing environmental 
degradation. This deliverable focuses on the monitoring of Soil Organic Matter 
(SOM) and soil quality. It sets forth defined goals regarding the main aspects of soil 
quality assessment. The key points regarding the objectives set in Chapter 1, are 
discussed below and have been achieved by a thorough and detailed examination 
and reporting of the most important scientific advancements specifically related to 
SOM. 

• Selection of indicators to assess soil functioning, standardization of 
reference values of soil indicators, and selection of a Minimum Data Set. 
The assessment and measurement of soil quality are typically determined by 
considering the spatial and temporal variations of specific properties. Several 
basic soil characteristics has been suggested as indicators of soil quality. From 
this collection of data, it is possible to derive other significant indications such 
as water availability, microbiological quotient, and respiratory quotient. A 
suggested standard for soil quality indicators is the capacity to identify a 10% 
change with a 90% confidence level. Certain indicators may suffer due to their 
significant temporal and/or geographical variation, or difficulty in interpreting 
their reaction to change. Choosing a suitable set of indicators or using 
substitute indications for a soil quality assessment is a crucial first stage in 
monitoring soil quality.  

• Propose carbon sequestration models adapted for MED agriculture. Both 
probabilistic or process-based models, and stochastic or statistical models 
were examined and tested in typical Med conditions. A thorough literature 
review revealed the advantages and shortcomings of several modeling efforts, 
facilitating the modeling choices for future development. SOM models are 
utilized extensively as valuable tools for bringing together and examining 
experimental data, describing effects, and extrapolating results. Additionally, 
they are employed to project the behavior of SOM under present and future 
environmental conditions. Furthermore, these models aid in decision-making 
processes across multiple levels and by diverse users. SOM models continue 
to be among the most significant tools we have for enhancing our 
understanding of the dynamics of soil organic matter.   

• Propose standardization of soil sampling schemes and building consistent 
soil quality related databases. Compliance with existing databases like 
LUCAS and WoSIS is essential; given the extensive range of soil characteristics 
considered, LUCAS Soil is one of the largest and most comprehensive, 
standardized soil databases on a continental scale worldwide. 
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• Propose analytical determination of organic carbon in soil and simple on-
field procedures (in-situ check of soil quality). Recent advancements in quick 
dichromate oximetric colorimetric techniques, which entail subjecting the 
sample to refluxing with external heating, provide SOC (soil organic carbon) 
values that are equivalent to those produced using automated dry 
combustion procedures. A straightforward and efficient method for 
measuring the easily decomposable carbon in soil by mild permanganate 
oxidation has the potential to identify changes in soil organic matter quality 
at an early stage. Each technique for determining SOC has inherent 
limitations, and the user should choose the approach that is most suitable for 
the kind of soils being studied, the anticipated recovery, and the desired level 
of accuracy for the findings. 

• Propose SOM monitoring methodology; possible inclusion of novel Near-
Infrared Reflectance Spectroscopy or colorimetry-based techniques. With 
recent improvements in VisNIR equipment, it is now feasible to get in situ 
VisNIR spectra measurements from soils.  

• Evaluate the impact of agricultural practices, Soil Improving Cropping 
Systems, and climate crisis on crop production and carbon sequestration. 
Numerous findings exist about carbon sequestration or soil organic carbon 
storage in croplands via integrated cropping systems and techniques, 
including conservation tillage, cover cropping, crop rotation, shifting 
cultivation, and fertilization. The soil organic carbon pool possesses significant 
potential for carbon sequestration, and integrated cropping systems, 
together with associated agricultural practices, have demonstrated good 
prospects for atmospheric carbon capture and climate change mitigation. In 
conclusion, sustainable farming practices can improve crop yields and soil 
health, while simultaneously fostering the conservation of natural resources 
and reducing environmental consequences. The literature review indicates 
that sustainable agricultural practices, including crop rotation, cover 
cropping, conservation tillage, and organic farming, enhance soil organic 
matter, nutrient cycling, and soil biodiversity, thereby increasing crop yields 
and carbon sequestration potential. 
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